

ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY, NAGPUR (An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2023-24

ELECTRONICS & TELECOMMUNICATION ENGINEERING

V Semester

Sr N	Course	Course Title		Hours per Week		Credit s	Max	Maximum Marks		
0	Code		L				Continual Assessment	End Sem Examinatio n	Tota l	
1	ET501T	Microprocessor and Microcontroller	3	-	-	3	30	70	100	
2	ET501P	Microprocessor and Microcontroller lab	-	-	2	1	25	25	50	
3	ET502T	Analog Circuit design	3			3	30	70	100	
4	ET502P	Analog Circuit design lab	-	-	2	1	25	25	50	
5	ET503T	Analog and Digital Communication	3	-	-	3	30	70	100	
6	ET503P	Analog and Digital Communication lab	-	-	2	1	25	25	50	
	ET504T	Program Elective – I	3			3	30	70	100	
7	ET505T	Open Elective - I	3	-	-	3	30	70	100	
8	H 104	Foundational Humanities Elective	2	-	-	-	Audit			
9	AS502T	English for Engineers	2	-	-	2	15	35	50	
10	ET506P	Technical Skill Development-II	-	-	2	1	50	-	50	
11	ET507T	Career Development – III	2	-	-	0	Audit			
		Total	21	-	8	21	290	460	750	

* Career Development (Interpersonal Skills and Aptitude)

ЕТ505т	Open Elective – I		Foundational Humanities Elective
ЕТ505т	Industrial applications of microcontroller	H-103	Development of Societies
ET504T	Program Elective I	H-104	Philosophy
ET504T(i)	Antenna and Wave Propagation		
ET504T(ii)	Internet of Things		

Heise	wohpande	June 2023	1.1	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2023-24

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Course Code	Course Name		Th	Tu	Pr	Credits	I	Evaluation	
ET501T	Microprocessor and Microcont	nollon	3		0	3	CA	ESE	Total
E15011	Microprocessor and Microcom	roner	3	-	U	3	30	70	100
					Course O	utcomes			
	Course Objectives amentals of microprocessor and er systems.	After c	comple	tion of	the co		at comes as are able to,		
 To study archi understand the stack memory programming. 	tecture of microprocessor & to concept of memory organization, Assembly language	808 2. Dev devi 3. Des cond	6/8088 elop p ices ign Inte cept of	microp orogran erfacin 8087 N	process n and g of 80 Numeri	sors, Pentius interfacing 086 with Tin ic-coprocess	ory organizat m and different of 8086 with mer, USART sor & its use it	nt peripheral h different peripheral d n practical a	l devices. peripheral evices, the pplication.
4. To study inter	facing of microprocessor & facing of microprocessor & for with different peripheral	 4. Explain the concept of internal architecture, Memory organization an Instruction set of 8051microcontroller. 5. Develop assembly language program and embedded c program for 805 microcontroller with Illustrate the Interfacing of 8051 with differen peripheral devices. 					n for 8051		

UNIT- I:	[10 Hrs]
Intel 8086/8088 microprocessor & Programming: 8086/8088 microproce generator 8284, memory organization & interfacing, Addressing modes, Bridge, DRAMAdded	
Unit –II:-	[10 Hrs]
8086 & Peripheral Interfacing: 8086 & Peripheral Interfacing: Assembly interfacing of peripherals like 8255 PPI, multiplexed 7-seg display timer/counter 8254; Architecture, working modes, interfacing. Serial co Pins & block diagram, interfacing with 8086 & programming. 8087 Num	& matrix keyboard interface using 8255, Programmable interval mmunication, Classification & transmission formats. USART 8251,
Unit –III:-	[9 Hrs]
8051 microcontrollers: Introduction to 8051 microcontrollers; Pin diagra SFR's, Flags, Counters/Timers, Serial ports. Interfacing of external RAM with priorities, enabling & disabling of interrupts	
UNIT- IV:	[9 Hrs]
8051 microcontroller & programming: Instruction set of 8051; data trans Assembly language programming examples, introduction to Embedded C	
Unit -V:	[10 Hrs]
8051 Timers, Serial and interfacing: Counter/Timer programming in vari control register, Baud rates. I/O expansion using 8255, Interfacing keybo Embedded C programming examples	

Acres	wohpande	August 2023	1	Applicable for 2023-24
Chairman - BoS	Dean – Academics	Date of Release	Version	

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

S.N	Title	Authors	Edition	Publisher
1	Programming & Interfacing of 8086/8088	D.V. Hall		TMH.
2	The 8051 Microcontroller and Embedded system	M.A. Mazidi & J.G. Mazidi	3 rd Indian reprint	Pearson Education
3	Advanced Microprocessor and peripherals	by K. M. Bhurchandi and A. K. Ray		
4	The Intel Microprocessor 8086 & 80486 Pentium and Pentium Pro. Architecture Programming and Interfacing	Brey.		

S.N	Title	Authors	Edition	Publisher
1	Intel Reference Manuals,			Intel
	Microprocessors & Microcontrollers:			
2	Microcontrollers,	Peatman		Mc Graw Hill
3	Microprocessors & Microcomputers	Md. Rafiquzzaman		
	based system design	_		

Acis	wohpande	August 2023	1	Applicable for 2023-24
Chairman - BoS	Dean – Academics	Date of Release	Version	

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation		
FT501D	Microprocessor and Microcontroller	-	-	2	1	CA	ESE	Total
ET501P	Lab					25	25	50

Course Objectives	Course Outcomes
1. To perform a practical on microprocessor and microcontroller based system.	After completion of the course students are able to,
 To study assembly language programming skills. 	1. Outline the procedure for execution Programs on 8086,8051 trainers.
3. Interface different peripherals with microprocessor and microcontroller with its use.	2. Demonstrate the concept of Assembly languages structure and programming skills
	3. Develop interfacing of various peripherals with 8086 and 8051
	4. Simulate the programs on different software platforms
	5. Design and develop the Mini project based on real life problems

Expt. No.	Title of the experiment
1	Study of 8086 microprocessor.
2	Write and execute 8086 assembly Language Programs to multiply two 16 bit numbers.
3	Write and execute 8086 assembly Language Programs to divide 16 bit number by 8 bit number.
4	Write and execute 8086 assembly Language Programs to search a look-up table for a byte (make use of XLAT)
5	Write and execute 8086 assembly Language Programs to compare two strings (use String instructions)
6	Write and execute 8086 assembly Language Programs to arrange the data bytes in ascending/descending order.
7	Write and execute 8086 assembly Language Programs to generate Fibonacci series and store it from memory location 0050H.
8	Write and execute 8051 assembly language program to find smallest byte in a string of bytes.
9	Write and execute 8051 assembly language program to exchange two data strings.
10	Write and execute 8051 assembly language program to generate square wave of 1 KHz (and any other frequency) on one of the pin of output port.
11	Interface 8255 with 8086 microprocessor and write a program to glow the alternate LED's.

Acis	wohpande	August 2023	1	Applicable for 2023-24
Chairman - BoS	Dean – Academics	Date of Release	Version	

ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY, NAGPUR (An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2022-23

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

12	Interface 8255 with 8086 microprocessor and write a program to rotate the stepper motor.
13	Interface 8253 with 8086 microprocessor and write a program to generate square waveform.
14	Interface of ADC using 8255 with 8086 and write a program to convert analog signal input into its equivalent digital value and store it in memory locations.
15	Write a separate program for addition, subtraction, multiplication and division of 8-bit numbers on using Kiel and on 8051 Micro- controller Trainer .
16	Implement the interfacing of LED's with 8051 micro-controller and WAP to blinking the LED.
17	Implement the interfacing of 7 segment display with 8051 micro-controller and WAP to display 0 to9 digit continuously.
18	Implement the interfacing of stepper motor with 8051 micro-controller and WAP to rotate it.
19	Mini-project

Text Books

S.N	Title	Authors	Edition	Publisher
1	Programming & Interfacing of 8086/8088	D.V. Hall,		TMH.
2	The 8051 Microcontroller and Embedded system	M.A. Mazidi & J.G. Mazidi	3 rd Indian reprint	Pearson Education
3	Advanced Microprocessor and peripherals	by K. M. Bhurchandi and A. K. Ray		

S.N	Title	Authors	Edition	Publisher
1	Intel Reference Manuals, Microprocessors & Microcontrollers:			Intel
2	Microcontrollers,	Peatman		Mc Graw Hill
3	Microprocessors & Microcomputers based system design	Md. Rafiquzzaman		

Acis	wohpande	August 2023	1	Applicable for 2023-24
Chairman - BoS	Dean – Academics	Date of Release	Version	

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Course Code	Course Name	Th	Tu	Pr	Credits]	Evaluation	
ET502T	Angles Cinquit Design	2		0		CA	ESE	Total
ЕТ502Т	Analog Circuit Design	3	-	0	3	30	70	100
 To st constru operation To stud applican To stud 	Course Objectives ady the basic characteristic, ction, open loop & close loop ons of Op-Amp. y linear and non linear cions of Op-Amp. y the design of Electronic of Oscillator, Multivibrator and Filters	To c op a To c circ: amp To Clipp lock time To tran usin opan	explain imp and demon- uits, inso olifier c explain oper, cl ced loop er. explain sistors g op-a mp.	the ba d basic strate a strume: ircuits a & e lamper p, Asta a & de ,Quadi mp alo	asic different feedback co and evaluate ntation amp valuate prace , precision able , nonstate sign Hartle rature,RC pl ong with di	utcomes ts are able to, ntial amplifier onfigurations e practical in lifier, logarith ctical Schmit rectifier circ ible, circuits u y,Colpitts, Cr hase shift & V iode function tterworth filte	tegrator, dif inic & anti lo tt trigger, co uits, Design using an opar rystal oscilla Wein bridge generator co	ferentiator ogarithmic omparator, of phase mp IC and ttors using oscillators circuit and

UNIT- I: OP-Amp Fundamentals		[10 Hrs]				
Block diagram of OP-Amp (Basic Building Blocks), Basic differential Amplifier using transistor and its operation, current mirror circuit, OP-Amp parameters, characteristic and Definition, Ideal OP-Amp, Equivalent circuit, Voltage Transfer curve, concepts of virtual short and ground. Inverting and Non-inverting configurations and design.						
Unit –II:- OP-Amp Linear Applicat		[10 H				
Voltage follower, Summing amplifier, scaling and averaging amplifier, Bridge Amplifiers using opamp, Instrumentation amplifier and applications, Integrator and differentiators (Practical considerations and design), Peak detector, Log and antilog amplifiers using OP-Amp, V to I and I to V converter circuit.						
Unit –III:- OP-Amp Non-Linear Ap	plications	[10 H	rs]			
Comparators, Schmitt trigger, Comparator IC such as LM 339, Clipper and Clamper, PLL, Multivibrators:, Astable & Monostable multivibrator circuits using IC 555, Sample/Hold circuits, D/A (R/R) & A/D conversion circuits (Successive Approximation Method), design of ADC using 0804 ICs. UNIT- IV: Design power supply and Oscillators [11 Hrs]						
Design of linear and switching power supplies:- Design of opmap based series voltage regulator, Design of Buck and boost switched mode power supply, Design of high efficiency SMPS using soft switching technique. Design of sinusoidal oscillators OPAMP based Wein Bridge ,Phase Shift oscillators, Transistorized Hartley, Colpitts oscillator, and Crystal oscillators, Evaluation of figure of merit for all above oscillator circuits. Design of function generator using an opamp.					usoidal oscillators	
Acis	wohpande		August 2023	1	Applicable for 2023-24	
Chairman - BoS	Dean – Academics		Date of Release	Version		

ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY, NAGPUR

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) **B. Tech. Scheme of Examination & Syllabus 2022-23**

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Unit -V: Design of Active Filters

[7 Hrs]

Advantages of active filters, Design of Butterworth Active Filter(upto 6th order), Design of Active filter of LPF, HPF, BPF and switched capacitor filter. Design of relay driver circuit using transistor and op-amp, Design of IGMF filters

Text Books

S.N	Title	Authors	Edition	Publisher
1	Operational Amplifier and Applications	R. Gayakwad.	3	PHI
2	. Electronic Devices and Circuits	David Bell	5	Oxford Higher Education
3	Designing with Op-Amps	Franco		McGraw Hill

S.N	Title	Authors	Edition	Publisher
1	Linear Integrated Circuits Mannal I, II,			National
	and III			Semiconductor
2	Linear Applications Handbook			National
				Semiconductors
3	Operational Amplifier	Dailey		McGraw Hill
	Operational Amplifier Design and	Tobey, Graemme,	1	McGraw Hill.
	Applications	Huelsman		

Acres	wohpande	August 2023	1	Applicable for 2023-24
Chairman - BoS	Dean – Academics	Date of Release	Version	

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Course Code	Course Name	Th	Tu	Pr	Credits	E	Evaluation	
ETSAAD	Angles Cinerit Desire leb	-	-	2	1	CA	ESE	Total
ET502P	02P Analog Circuit Design lab					25	25	50

 To study and verify the basic characteristic of Op-Amp. To verify linear and non linear applications of Op-Amp. To verify linear and non linear applications of Op-Amp. To explain the basic differential amplifier using transistor, ideal op amp and basic feedback configurations. To demonstrate and evaluate practical integrator, differentiator circuits, instrumentation amplifier, logarithmic & anti logarithmic amplifier circuits. To explain & evaluate practical practical applications . 	Course Objectives	Course Outcomes
 To explain & design Hartley, Colpitts, Crystal oscillators To Analyze design active Butterworth filters up to 6th order 	characteristic of Op-Amp.2. To verify linear and non linear	 To explain the basic differential amplifier using transistor, ideal op amp and basic feedback configurations. To demonstrate and evaluate practical integrator, differentiator circuits, instrumentation amplifier, logarithmic & anti logarithmic amplifier circuits. To explain & evaluate practical practical applications . To explain & design Hartley, Colpitts, Crystal oscillators

Expt. No.	Title of the experiment						
1	Study & Perform OPAMP as An Inver	ting Amplifier Using Brea	ad board & Kit				
2	Study & Perform OPAMP as Non Inve	erting Amplifier Using Bre	ead board & Kit				
3	Study & Perform Adder & Avarager(In	nverting Type) On Breadb	oard				
4	To Design the Differential Amplifier u	To Design the Differential Amplifier using transistor on Multisim					
5	study & Perform Adder/Subtractor Circuit On Breadboard						
6	Study & Perform Integrator & Differentor on Breadboard						
7	To Design the Operation of Astable Multivibrator using IC 555 & calculate Duty Cycle.						
8	To Design the Operation of Monostable Multivibrator using IC 555 & calculate Duty Cycle.						
9	Study & Perform Transistor series Voltage Regulator on Kit						
10	Study & Perform Band Pass Filter design on Breadboard.						
11	Study & Perform OPAMP as An Inver	Study & Perform OPAMP as An Inverting Amplifier Using Bread board & Kit					
Fext Boo	oks						
S.N	Title	Authors	Edition	Publisher			

S.N	Title	Authors	Edition	Publisher
1	Operational Amplifier and Applications	R. Gayakwad.	3	PHI
2	Electronic Devices and Circuits	David Bell	5	Oxford Higher Education

Acis	wohpande	August 2023	1	Applicable for 2023-24
Chairman - BoS	Dean – Academics	Date of Release	Version	

ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY, NAGPUR (An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) B. Tech. Scheme of Examination & Syllabus 2022-23 ELECTRONICS AND TELECOMMUNICATION ENGINEERING

S.N	Title	Authors	Edition	Publisher
1	Linear Integrated Circuits Mannal I, II,			National
	and III			Semiconductor
2	Linear Applications Handbook			National
				Semiconductors
3	Operational Amplifier	Dailey		McGraw Hill
	Operational Amplifier Design and	Tobey, Graemme,	1	McGraw Hill.
	Applications	Huelsman		

Acres	wohpande	August 2023	1	Applicable for 2023-24
Chairman - BoS	Dean – Academics	Date of Release	Version	

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

FIFTH SEMESTER

ETS031Analog and Digital Communication3-0330Course Objectives1. To study basic components of digital communication systems.After completion of the course students are able After completion of the course students are able to understand the designing aspects of optimum receivers for digital modulation techniques.3. Explain the working principles of basic to communication system.3. To study the analysis of error performance of digital modulation techniques.3. Demonstrate and elaborate the concept coding techniques3. Demonstrate and elaborate the concept decoding techniques4. Illustrate digital modulation techniques.	ET503T Analog and Digital Communication 3 - 0 3 30 70 10 Course Objectives Course Outcomes To study basic components of digital communication systems. After completion of the course students are able to, I. Explain the working principles of basic building blocks of an communication system. To understand the designing aspects of optimum receivers for digital modulation techniques. I. Explain the working principles of basic building blocks of a dig communication system. 2. Explain the working principles of basic building blocks of a dig communication system. 3. Demonstrate and elaborate the concept of source and wavef coding techniques 4. Illustrate digital modulation techniques. 5. Demonstrate and elaborate the concept of channel coding decoding techniques Model and construct digital communication system.	C	ourse Code	Course	Name		Th	Tu	Pr	Credits		Evaluation	
Course Objectives Course Outcomes 1. To study basic components of digital communication systems. After completion of the course students are able 2. To understand the designing aspects of optimum receivers for digital modulation techniques. 1. Explain the working principles of basic communication system. 3. To study the analysis of error performance of digital modulation techniques. 3. To study the analysis of error performance of digital modulation techniques. 5. Demonstrate and elaborate the concept decoding techniques 5. Demonstrate and elaborate the concept decoding techniques	Course Objectives Course Outcomes To study basic components of digital communication systems. After completion of the course students are able to, To understand the designing aspects of optimum receivers for digital modulation techniques. 1. Explain the working principles of basic building blocks of a dig communication system. 2. Explain the working principles of basic building blocks of a dig communication system. 3. Demonstrate and elaborate the concept of source and wavef coding techniques. 5. Demonstrate and elaborate the concept of channel coding decoding techniques, Model and construct digital communication systems under given power, communication system.		ЕТ503Т	Analog and Digita	l Communica	ation	3	-	0	3 -			Total
 To study basic components of digital communication systems. To understand the designing aspects of optimum receivers for digital modulation techniques. To study the analysis of error performance of digital modulation techniques. To study the analysis of error performance of digital modulation techniques. To study the analysis of error performance of digital modulation techniques. To study the analysis of error performance of digital modulation techniques. To study the analysis of error performance of digital modulation techniques. To study the analysis of error performance of digital modulation techniques. Demonstrate and elaborate the concept decoding techniques. 	 To study basic components of digital communication systems. To understand the designing aspects of optimum receivers for digital modulation techniques. To study the analysis of error performance of digital modulation techniques. To study the designing of digital communication systems under given power, After completion of the course students are able to, After completion of the course students are able to, Explain the working principles of basic building blocks of an communication system. Explain the working principles of basic building blocks of a dig communication system. Explain the working principles of basic building blocks of a dig communication system. Explain the working principles of basic building blocks of a dig communication system. Demonstrate and elaborate the concept of source and wavef coding techniques Illustrate digital modulation techniques. Demonstrate and elaborate the concept of channel coding decoding techniques, Model and construct digital communication systems using appropriate mathematical techniques and descrete spread spectrum analysis. 					1 1 1 1 1 1 1 1 1 1					100		
 communication systems. To understand the designing aspects of optimum receivers for digital modulation techniques. To study the analysis of error performance of digital modulation techniques. To study the analysis of error performance of digital modulation techniques. Explain the working principles of basic communication system. Explain the working principles of basic to communication system. Demonstrate and elaborate the concept coding techniques. Demonstrate and elaborate the concept decoding techniques. 	 communication systems. To understand the designing aspects of optimum receivers for digital modulation techniques. To study the analysis of error performance of digital modulation techniques. To study the designing of digital communication systems under given power, Explain the working principles of basic building blocks of an communication system. Explain the working principles of basic building blocks of a diacommunication system. Explain the working principles of basic building blocks of a diacommunication system. Demonstrate and elaborate the concept of source and wavefer coding techniques. Demonstrate and elaborate the concept of channel coding decoding techniques, Model and construct digital communication systems using appropriate mathematical techniques and desception spread spectrum analysis. 		(Course Objectives						Course Ou	tcomes		
 To understand the designing aspects of optimum receivers for digital modulation techniques. To study the analysis of error performance of digital modulation techniques. To study the analysis of error performance of digital modulation techniques. Explain the working principles of basic techniques. Explain the working principles of basic techniques. Explain the working principles of basic techniques. Demonstrate and elaborate the concept coding techniques. Demonstrate and elaborate the concept decoding techniques. 	 Explain the working principles of basic building blocks of an communication system. Explain the working principles of basic building blocks of a dia communication system. Explain the working principles of basic building blocks of a dia communication system. Explain the working principles of basic building blocks of a dia communication system. Explain the working principles of basic building blocks of a dia communication system. Explain the working principles of basic building blocks of a dia communication system. Explain the working principles of basic building blocks of a dia communication system. Demonstrate and elaborate the concept of source and wavef coding techniques Illustrate digital modulation techniques. Demonstrate and elaborate the concept of channel coding decoding techniques, Model and construct digital communicat systems using appropriate mathematical techniques and desception spread spectrum analysis. 	1.	•	-	of digital	After	comple	tion of	the co	ourse students	s are able to	,	
 optimum receivers for digital modulation techniques. To study the analysis of error performance of digital modulation techniques. Explain the working principles of basic to communication system. Demonstrate and elaborate the concept coding techniques Illustrate digital modulation techniques. Demonstrate and elaborate the concept decoding techniques Model and constrate 	 continum receivers for digital modulation techniques. To study the analysis of error performance of digital modulation techniques. To study the designing of digital communication systems under given power, Explain the working principles of basic building blocks of a digital techniques of the concept of source and wavefunction system. Explain the working principles of basic building blocks of a digital communication system. Demonstrate and elaborate the concept of source and wavefunction techniques. Demonstrate and elaborate the concept of channel coding decoding techniques, Model and construct digital communication systems under given power, 	ว		-	aspects of		-		-		of basic bui	lding blocks	of analo
 To study the analysis of error performance of digital modulation techniques. To study the analysis of error performance of digital modulation techniques. Demonstrate and elaborate the concept decoding techniques. 	 To study the analysis of error performance of digital modulation techniques. To study the designing of digital communication systems under given power, Coding techniques Illustrate digital modulation techniques. Demonstrate and elaborate the concept of channel coding decoding techniques, Model and construct digital communication systems under given power, 	2.	optimum re		-	2. E c	Explain commur	the wo	orking 1 syster	principles of m.		C	U
decoding techniques. Model and constr	To study the designing of digital communication systems under given power, decoding techniques, Model and construct digital communication systems under given power, decoding techniques, Model and construct digital communication systems using appropriate mathematical techniques and descent spread spectrum analysis.	3.	To study the		ormance of	4. 1	oding t Illustrat	echniq e digita	ues al mod	ulation techn	iques.		
4 To stildy the designing of digital	communication systems under given power, spread spectrum analysis.	4.	•	-		5. Demonstrate and elaborate the concept of channel coding an decoding techniques, Model and construct digital communication							
systems using appropriate mathematical	spectral and error performance constraint.	•••			en power,		•	U		•	ematical teo	chniques and	d describ
spectral and error performance constraint.			spectral and	error performance cor	nstraint.								

Modulation Index, Power relations applied to sinusoidal signals, Comparison of AM, FM and PM, Pulse Analog modulation: PAM PWM & PPM. [10 Hrs]

Unit –II:-

Model of digital communication system, Gram Schmitt Orthogonalization procedure, signal space concept, Geometric interpretation of signals. PCM - Generation & reconstruction, Bandwidth requirement of PCM, Differential PCM, Delta Modulation & Adaptive DM. (Only Block diagram treatment).

Source coding Theorem, Shannon Fano Coding, Huffman coding-Z encoding algorithm, Rate distortion theory for optimum quantization, scalar & vector quantization. Waveform coding methods: ADPCM, Adaptive Sub-Band & Transform coding, LP & CELP coding.

UNIT- IV:	[8 Hrs]
Coherent Binary: QPSK, MSK, Gaussian MSK, DPSK, Memory less	modulation methods, linear modulation with Memory, nonlinear
modulation methods with memory: CPFSK, CPM.Binary: QPSK, MSK, G	Gaussian MSK, DPSK, CPFSK, CPM.

Unit -V:

[10 Hrs]

[10 Hrs]

Introduction to Galois field, Construction of Galois field GF (2 m) & its basic properties. Types of error control: Forward error correction (FEC), Automatic repeat request system (ARQ). Convolution encoding and decoding distance properties, Viterbi algorithm and Fano algorithm. Spread - Spectrum methods: - Study of PN sequences, direct sequence methods, Frequency hop methods, slow and fast frequency hop.

Acis	wohpande	August 2023	1	Applicable for 2023-24
Chairman - BoS	Dean – Academics	Date of Release	Version	

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Text Books

S.N	Title	Authors	Edition	Publisher
1	Digital communication	Simon Haykin		WEP
2	Error Control Coding 1. "	Shu Lin & Daniel J.Costello		ТМН
3	Digital Communication	J.S.Chitode		
4	Electronic Communication Systems	Kennedy & Devis	Fourth Edition	Tata McGraw Hills Publication
5	Modern Digital and Analog. Communication Systems"	B. P. Lathi	Third Edition	Oxford Press Publication

S.N	Title	Authors	Edition	Publisher
1	Communication Systems	Simon Haykin	Fourth Edition	John Wiley & Sons
2	Principles of Communication Systems	Taub & Schilling		Tata McGraw-Hill
3	Digital and Analog Communication Systems	Leon W.Couch, II	Seventh Edition	Pearson Education

Acres	wohpande	August 2023	1	Applicable for 2023-24
Chairman - BoS	Dean – Academics	Date of Release	Version	

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation		
FT502D		2	1	CA	ESE	Total		
ET503P	Analog and Digital Communication lab					25	25	50

Course Objectives	Course Outcomes
 To study the concept of communication based on RF-AF in digital domain. To study the role of sampling factor for analyzes the digital communication systems To study & Design the digital communication systems. To study line coding and its application. 	 After completion of the course students are able to, Test the concept of the analog communication-based systems and techniques Examine and analyze the digital communication-based circuit design Design and conduct experiments for testing digital communication circuits and systems. Analyze the different coding technique for design and modeling of digital communication. Formulate and solve digital communication circuits and systems problems.

Expt. No.		Title of the experiment								
1	To generate Amplitude	To generate Amplitude Modulated wave using different techniques and plot its waveform.								
2	To generate Frequency	To generate Frequency Modulated wave using different techniques and plot its waveform.								
3	To study generation of	f SSB-SC using balanced modulate	r							
4	To study generation of	f DSB-SC signal.								
5	To Study and perform	Error Detection and Correction co	des.							
6	To study the performa	nce of adaptive Delta modulator/D	emodulator circuits.							
7	To study and observe	the effect of signal Distortion using	g EYE-Diagram.							
8	To Study and perform	To Study and perform generation & reception of BPSK & perform its spectral analysis.								
9	To Study and perform	generation & reception of FSK &	perform its spectral an	alysis.						
10	To Study and perform	generation & reception of QPSK &	k perform its spectral a	analysis.						
11	To Study and perform	generation & reception of MSK &	perform its spectral a	nalysis.						
12	To Study and perform	generation & reception of DPSK &	k perform its spectral a	analysis.						
13	Write and execute Sci	lab/Matlab code for generation of I	BPSK / Prepare Simuli	ink Model for	BPSK.					
14	Write and execute Sci	lab/Matlab code for generation of I	SK / Prepare Simulin	k Model for F	SK.					
15	Write and execute Sci	lab/Matlab code for generation of (QPSK / Prepare Simuli	ink Model for	QPSK					
Ac	-52	woshpande	August 2023	1	Applicable for 2023-24					
Chairman - BoS Dean – Academics Date of Release Version										

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Test Books:

S.N	Title	Authors	Edition	Publisher
1	Digital communication	Simon Haykin		WEP
2	Error Control Coding	Shu Lin & Daniel J.Costello		ТМН
3	Digital Communication	J.S.Chitode		
4	Electronic Communication Systems	Kennedy & Devis	Fourth Edition	Tata McGraw Hills Publication
5	Modern Digital and Analog. Communication Systems"	B. P. Lathi	Third Edition	Oxford Press Publication

S.N	Title	Authors	Edition	Publisher	
1	Communication Systems	Simon Haykin	Fourth Edition	John Wiley & Sons	
2	Principles of Communication Systems	Taub & Schilling		Tata McGraw-Hill	
3	Digital and Analog Communication Systems	Leon W.Couch, II	Seventh Edition	Pearson Education	

Acis	wohpande	August 2023	1	Applicable for 2023-24
Chairman - BoS	Dean – Academics	Date of Release	Version	

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Course Code	Course Name		Tu	Pr	Credits]	Evaluation	
ET504T(!)	Antonno and Wana Duana action	2		0	2	CA	ESE	Total
ET504T(i)	Antenna and Wave Propagation	3	-	0	3	30	70	100
1	Course Objectives			1		se Outcome		
transmission line their principle of 2. The student w	udents with various basics of waveguides, characteristics, radiating elements, antenna operation, analysis and their applications. ill able to understand the features of Antenn p antenna and reflector antenna.	ns, 1 12 11a 3 4	. Exam 2. Desig 3. Desig 4. Anal	nine tra gn & an gn and yze an	ion of the con unsmission lin nalyze the wi characterize d design Mid e operation o	ne character ired antenna antenna arra cro-strip Ant	istics. parameters. lys.	ntennae.

UNIT- I: Transmission lines	[8 Hrs]
Transmission line equations and their solution. Transmission line	e parameters, characteristic impedance, propagation constant,
attenuation constant and phase constant, waveform distortion, disto	
Equivalent circuits of transmission lines, open and short circuited	· · · · · · · · · · · · · · · · · · ·
Unit –II:- Linear wire antennas	[8 Hrs]
Retarted Potential, Infinitesimal dipole, its radiation field, radiation half wave length dipole, Monopole and their application, folded d	
Unit –III:- Antenna Array	[8 Hrs]
Array of two isotropic point sources, non – isotropic sources, prin	ciple of pattern multiplication, linear arrays of n elements,
broadside, End fire, radiation Pattern, directivity, Beam width and	null directions, array factor, Antenna analysis using
Binomial Array & Dolph-Tschebyscheff. Log-periodic and Yagi	-Uda antennas.
UNIT- IV: Microstrip antennas	[6 Hrs]
Radiation Mechanism of Microstrip antenna, feeding methods, me	the thods of analysis, Circularly Polarized Patch antenna,
Rectangular & circular patch, Circular polarization and feed netwo	ork.
Unit -V: Reflector antennas	[6 Hrs]
Simple reflectors, the design of a shaped Cylindrical reflector, Rad	diation patterns of Reflector Antennas, Dual shaped Reflector
Systems, Plane reflector, Corner reflector, parabolic reflector, hor	rn antenna, aperture antenna.
\bigcirc	1

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

S.N	Title	Authors	Edition	Publisher
1	Antenna Theory analysis and design	Costantine A. Balanis		John Wiley ublication
2	Antenna and Wave propagation	K.D. Prasad		Satya Prakashan
3	Electromagnetic	Jordan Balmann,		Prentice Hall of India publication
4	Antenna Theory and Design	Robert S. Elliott		Wiley Student Edition
5	Electromagnetic Waves	R. K. Shevgaonkar		

S.N	Title	Authors	Edition	Publisher
1	Antenna & Wave Propagation	Sisir K Das		Mc Graw Hill
2	Antenna and wave Propagation	Harish A. R		Oxford University Press
3	Antennas and Radio Propagation,	R.E. Collins,		Mc Graw -Hill

Acis	wohpande	August 2023	1	Applicable for 2023-24
Chairman - BoS	Dean – Academics	Date of Release	Version	

ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY, NAGPUR (An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2022-23

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Course Code	Cour	se Name		Th	Tu	Pr	Credits	Evaluation		
ET504T(;;)	Intorno	t of Things		3			3	CA	ESE	Total
ET504T(ii)	mterne	t of Things		3	-	-	3	30	70	100
 To acqu IOT The stu develop 	Course Objectives aint students with ba dent will able Arduino and Raspl for IoT application	to design and	1.	Exp com Sens Ana Mac Den IoT Imp Sma	lain the ponent sor Net lyze (hine-to nonstra applica lement rt Citie	e funda s of 1 works Commo p-Mach te use ation conce es and 3	amental con IoT and A and Machi unication ine Commu- the of Ard pts of IoT Smart Hom	utcomes ts are able to, ncepts of IoT analyze Com ne-to-Machin Protocols, Sa unications unications unica and Rasj for Sensor-C	, explore the munication e Communid ensor Netwo pberry Pi Pl loud, Fog C	e different Protocols, cations vorks and atform for Computing,
			6.		stries k with	Senso	rs			

UNIT- I: Introduction to IoT			[7 Hrs]	
Introduction to IoT, evolution of IoT,			L .	-
AMQP protocol., Communication Pro	otocols: ZigBee, 6 LoWPAN, Blueto	ooth NFC and RFID,	Sensor Netwo	orks, Machine-to-
Machine Communications				
Unit –II:- Introduction to Arduino	Programming		[8 Hrs]	
Interoperability in IoT, Introduction to	o Arduino Programming, Integration	n of Sensors and Act	uators with Are	duino, Introduction
to Python programming				
Unit –III:- Raspbery- pi , SDN for I	oT & Data Handling		[8 Hrs]	
Introduction to Raspberry Pi Impleme	entation of IoT with Raspherry Pi (co	ontd) Introduction to	o SDN_SDN fc	or IoT Data
Handling and Analytics	mation of for whit haspoonly if (or	sind), infoddetion a	o obit, obit it	<i>i</i> 101, Duiu
Transfing and Transfers				
UNIT- IV: Cloud Computing			[7 Hrs]	
Cloud Computing, Sensor-Cloud. Fog	Computing Smart Cities and Smar	t Homes		
Cloud Computing, Sensor-Cloud. Pog	computing, smart Cities and smar	t Homes		
Unit -V: Industrial IoT & Case Stud	dy:		[6 Hrs]	
		A 1/ TT 1/	.1 A .1 1.	<u> </u>
Connected Vehicles, Smart Grid, Indu	istrial 101 Industrial 101, Case Stud	y: Agriculture, Heal	incare, Activity	Monitoring
\bigcirc			1	
Acis	and here also	August 2023		Applicable for
	wormel			2023-24
Chairman - BoS	Dean – Academics	Date of Release	Version	-

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Text Books

-										
S.N	Title	Authors	Edition	Publisher						
1	The Internet of Things: Enabling	Pethuru Raj and Anupama C.	1	CRC Press						
	Technologies, Platforms, and Use Cases	Raman								
2	Internet of Things: A Hands-on Approach	Arshdeep Bahga and Vijay Madisetti	1	Universities Press)						

S.N	Title	Authors	Edition	Publisher
1	Introduction to Internet of	Prof. Sudip		https://swayam.gov.in/nd1_noc19_cs65/preview
	Things	Misra, IIT Kharagpur		

Hars	wohpande	August 2023	1	Applicable for 2023-24
Chairman - BoS	Dean – Academics	Date of Release	Version	

ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY, NAGPUR (An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2022-23

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

С	ourse Code	Course Name		Th	Tu	Pr	Credits	Evaluation		
ET505T Industrial Applications of			3			3	CA	ESE	Total	
	Microcontrollers			3	-	•	3	30	70	100
							~ ~ ~			
	(Course Objectives					Course O	utcomes		
1.	The studen	ts' knowledge should get updated	After c	omple	tion of	the co	urse student	ts are able to,		
	with the lat	est industrial trends in technology		-						
2.	The studen	t can creatively use the capabilities	1.	Expl	lain the	archit	ecture of m	odern microco	ontrollers	
	of modern advanceme	microcontrollers & latest technical nts.	2.	Dev	elop a	circuit		of external e		nnected to
			3.	Desi	gn the	applic	ation by usi	ng embedded	peripherals	
			4.	Con	pare a	nd cho		per communic		ice for the
			5.		ine the		•	em for an app	olication cor	sisting of

	[7 Hrs]
: Selection of microcontrollers, Architecture & Characteristics of Arduino, Introduction to I	ESP 32 & ARM based
Microcontrollers. setting up the Arduino board, creating sketches, using Libraries, using exa	mple codes, Debugging Using the
Serial Monitor & ICE (In-Circuit Emulator)	
Unit –II:- Input-output ports & Interface	[8 Hrs]
Architecture of the universal I/O ports subsystem (PIO) used in microcontrollers. Analog Inf Microcontroller pin configuration programming. A/D converter (ADC) & D/A Converters(I Sensors: Temperature sensors, Humidity sensors, Proximity sensors, Ultrasonic sensor, Acc Case study of all faults diagnostic system for industrial encoders	DAC) used in microcontrollers.
Unit –III:- Memory System ,Clock generator and timers/counters:	[8 Hrs]
	$(\mathbf{T}\mathbf{C})$
Flash memory subsystem, EEPROM. Interrupts system, Architecture of timers/cc microcontrollers, Use of the TC subsystem to generate square waveforms of given param factor, and time shift of waveforms. Pulse width Modulation (PWM). TC subsystem interrup Case study of Power Harmonic Analyzer	eters and measure frequency, duty
microcontrollers, Use of the TC subsystem to generate square waveforms of given param	eters and measure frequency, duty
microcontrollers, Use of the TC subsystem to generate square waveforms of given param factor, and time shift of waveforms. Pulse width Modulation (PWM). TC subsystem interrup Case study of Power Harmonic Analyzer	eters and measure frequency, duty ots. [8 Hrs] used in microcontrollers, Registers
microcontrollers, Use of the TC subsystem to generate square waveforms of given param factor, and time shift of waveforms. Pulse width Modulation (PWM). TC subsystem interrup Case study of Power Harmonic Analyzer UNIT- IV: Communication Interfaces: USART, I2C (TWI) and SPI standards, The architecture of USART, TWI and SPI controllers and software handling of above interfaces for Arduino, Handling of the interrupts generated by USB to TTL converter module.Examples on I2C(Interfacing RTC), SPI(Serial Eprom)	eters and measure frequency, duty ots. [8 Hrs] used in microcontrollers, Registers

Acres	wohpande	August 2023	1	Applicable for 2023-24
Chairman - BoS	Dean – Academics	Date of Release	Version	

ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY, NAGPUR (An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) B. Tech. Scheme of Examination & Syllabus 2022-23 ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Text Books

S.N	Title	Authors	Edition	Publisher
1	Arduino Cookbook	Michael Margolis	1	O'Reilly Media
2	Microcontrollers, Architecture, Programming, Interfacing and System Design	Rajkamal	1	Pearson
3	Industrial Automation Using PLC SCADA & DCS PLC and SCADA Book	Rajesh Mehra, Vikrant Vij	2	Paperback Bunko
4	Arduino for Beginners: Essential Skills Every Maker Needs	John Baichtal,	1	Pearson

S.N	Title	Authors	Edition	Publisher
1	Microcontrollers			https://www.farnell.com/datasheets/1682209.pdf
	datasheets and user's			
	manual			
2	UNO R3 Arduino			https://docs.arduino.cc/hardware/uno-rev3
	Documentation			
3	Audrino			https://www.ti.com/microcontrollers-mcus-
				processors/processors/digital-signal-
				processors/overview.html

Actes	wohpande	August 2023	1	Applicable for 2023-24
Chairman - BoS	Dean – Academics	Date of Release	Version	