

ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY, NAGPUR (An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) B. Tech. Scheme of Examination & Syllabus 2022-23 ARTIFICIAL INTELLIGENCE

Sr	Course	Course Title	Hours per Week		Credits	Maximum Marks			
No	Code	Course The	L	т	Р		Continual Assessment	End Sem Examination	Total
1	AS301T	Applied Mathematics – III	3	1	-	4	30	70	100
2	AI301T	Data Structures	4	-	-	4	30	70	100
3	AI301P	Data Structures Lab	-	-	2	1	25	25	50
4	AI302T	Fundamentals of Artificial Intelligence	3	1		4	30	70	100
5	AI302P	Fundamentals of Artificial Intelligence Lab	-	-	2	1	25	25	50
6	AI303T	Computer Networking	3	1	-	4	30	70	100
7	AI304P	Object Oriented Programming Lab	-	-	2	1	25	25	50
8	H 102	Universal Human Values – 2	3	-	-	3	30	70	100
9	AI305P	Sports, Yoga, & Career Development *	-	-	2	0	-	-	-
Total			16	3	8	22	220	380	650

Scheme of Examination - THIRD SEMESTER

* Career Development (Interpersonal Skills, Aptitude, and Logical Thinking)

and	wohpande	January 2023	1.1	Applicable for 2022-23
Chairman - BoS	Dean – Academics	Date of Release	Version	

B. Tech. Scheme of Examination & Syllabus 2022-23 ARTIFICIAL INTELLIGENCE

	THIRD SEMESTER										
Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation					
AS301T	Applied Mathematics III	2	1	1 -	4	CA	ESE	Total			
		3			4	30	70	100			

Course Objectives	Course Outcomes
This course is intended	Students will be able to
 To familiarize the students with concepts in linear algebra To provide students standard concepts of statistics. 	 Identify Engineering problems related to Matrices: Eigen value & Eigen vectors & Functions of Matrices. Apply various concepts of vector spaces. Demonstrate the concepts of advanced linear algebra. Use statistical methods and tools in engineering problems. Recognize the optimization formulations.
linit l	[8Hrs]
Linear dependence of vectors, Characteristics equation, Eigen va guadratic form to canonical form by orthogonal transformation. St	alues and Eigen vectors, Reduction to diagonal form, Reduction of vivester's theorem.
Unit II	[8Hrs]
Vector Space, Subspaces, Linear Dependence/Independence, I Null Space and Nullity, Rank nullity theorem, Matrix Represent representation as square matrices, Invertible linear operator, Inve	Basis, dimension, Linear transformation, Range Space and Rank, ation of a linear transformation, Linear Operators on R ⁿ and their erse of nonsingular matrices.
Unit III	[7Hrs]
Inner Product Spaces, Norm, Orthonormal sets, Gram Schmidt o and Singular Value Decomposition.	rthogonalization process, projections, positive definite matrices,
Unit IV	[7Hrs]
Mean, Median, Mode, Mean deviation, Standard deviation, Hypothesis, t-test, E-test and Chi square test. One way and two w	thesis, Null hypothesis, Alternative hypothesis, Testing a variance (ANOVA).

Unit V

Continuous optimization, Optimization using Gradient descent, Constrained optimization and Lagrange's multipliers, Convex optimization, Simplex method.

Text Books

S.N	Title	Authors	Edition	Publisher
1	Higher Engineering Mathematics	B.S. Grewal	40th Edition	Khanna Publication
2	Linear Algebra	Hoffman and Kunze	2 nd edition	Prentice Hall of India, New Delhi
3	Convex optimization.	Stephen Boyd and	-	Cambridge University
		Lieven Vandenberghe		Press

[6Hrs]

S.N	Title	Authors	Edition	Publisher						
1	A Text Book of applied Mathematics	P.N. Wartikar & J.N. Wartikar	2 nd edition	Poona Vidyarthi Griha Prakashan						
2	A text book of Engineering Mathematics	N. P. Bali & M. Goyal	6 th edition	Laxmi Publication						
3	Probability, Statistics with Reliability, Queuing and Computer Science Applications	K.S. Trivedi.	2 nd edition	PHI						
4	Linear Algebra	Seymour Lipschutz et al:	3 rd edition	Schaum outlinevseries						
5	Advanced Engineering Mathematics by	Erwin Kreysizig	8th Edition	Wiley India						

m glowie	wohpande	January 2023	1.1	Applicable for 2022-23
Chairman - BoS	Dean – Academics	Date of Release	Version	

ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY.NAGPUR

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2022-23

ARTIFICIAL INTELLIGENCE

THIRD SEMESTER										
Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation				
A1204T	Data Structures	4			4	CA	ESE	Total		
AISUTT	Data Structures	4	-	-	4	30	70	100		

Course Objectives	Course Outcomes					
 This course is intended To make students understand efficient storage structures of data for an easy access. To differentiate between linear &non linear data structures and its respective benefits To give emphasis on design and implementation of abstract data structures. To develop application using data structures and algorithm and analysis 	 Students will be able to Select appropriate data structures based on the specified problem definition and analysis the algorithm. Use different algorithms for performing operations like sorting, searching, insertion and deletion of data on various data structures. Develop, manipulate and integrate stack and queue algorithm. Implement Algorithm for link list to solve problems like sorting, searching, insertion and deletion of data 					
	Design advance data structure dsing non inteal data structures.					

Unit I [8Hrs] Introduction: Basic Terminologies: Elementary Data Organizations, Data Structures, Need of Data Structure, Abstract Data type, Analysis of Algorithms: RAM Model, Analysis of Iterative and Recursive Algorithms, Asymptotic Notations, Apriori analysis, Time and space complexity, Asymptotic notations.

Unit II [8Hrs] Searching and sorting Techniques: Importance of searching. Searching: Sequential, Binary; Sorting : Bubble sort, selection sort, quick sort, Merge sort, heap sort, Shell sort; performance analysis and comparison. [10Hrs] Unit III

Stacks and Queues: Definition and Terminology, ADT Stack and its operations, Stack using Pointers. Applications of Stacks: Expression Conversion and evaluation.

ADT queue and its operation, Types of Queue: Simple Queue, Circular Queue, Priority Queue, Double ended queue (dequeue): Application of queues

Unit IV

[10Hrs] Linked Lists: Singly linked lists: Representation in memory, Operation on linked list, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list; Linked representation of Stack and Queue, Types of linked list: Singly linked list, Circular linked list, Doubly linked list, Circular doubly linked list; header node linked lists, Application of Linked Lists. [8Hrs]

Unit V

Trees: Basic Tree Terminologies, Different types of Trees: Binary Tree, Threaded Binary Tree, Binary Search Tree, AVL Tree, B Tree, B+ Tree; Tree traversals algorithm, Tree operations on each of the trees. Applications of all trees.

Graph: Basic Terminologies and Representations, Graph search and traversal algorithms: Depth First search and Breadth First Search Algorithms, Spanning trees: Minimal cost spanning tree and Shortest path algorithm (Single Source-all pairs).

lext Bo	DOKS			
S.N	Title	Authors	Edition	Publisher
1	Fundamentals of Data Structures in C++	E. Horowitz, D. Mehta, S. Sahni,	2nd edition,	Silicon Press
			2008.	
2	Programming with C and Data structures	R.S. Bichkar	1st edition,2014.	Universities Press
Referei	nce Books			
S.N	Title	Authors	Edition	Publisher
1	Data Structures and Algorithm in Java	Goodrich, Tamassia	6th edition.	Wiley publication
2	Introduction to Algorithms	T. H. Cormen, C. E. Leiserson, R.	3rd edition, 2009	MIT Press
		L.Rivest, C. Stein		
3	Murach's Java Programming	J. Murach	4 th edition, 2012.	Shroff Publishers

and	wohpande	January 2023	1.1	Applicable for 2022-23
Chairman - BoS	Dean – Academics	Date of Release	Version	

B. Tech. Scheme of Examination & Syllabus 2022-23

ARTIFICIAL INTELLIGENCE

THIRD SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation		
A1204 D	Data Structures Lab		-	2	1	CA	ESE	Total
AISUTP		-				25	25	50

Course Objectives	Course Outcomes
This course is intended	Students will be able to
 To develop skills to design and analyze simple linear and non linear data structures. 	 Execute functions to implement linear and non-linear data structure operations
 To strengthen the ability to the students to identify and apply the suitable data structure 	 Design and analyze the time and space efficiency of the data structure
for the given real world problemTo gain knowledge in practical applications of	 Choose appropriate linear / non-linear data structure operations for solving a given problem
data structures.	 Implement Algorithm for link list to solve problems like sorting, searching, insertion and deletion of data
	 Use the non-linear data structure operations for a given problem

Expt. No.	List of the experiment
1	Programs will be based on searching .
2	Programs will be based on sorting i) Bubble sort ii) Selection sort iii)Quick sort vi) Insertion sort vii) Merge sort
	viii)Heap sort.
3	Programs will be based on stack and its operations using i) Arrays ii) Linked list(Pointers).
4	Programs will be based on Queue and its operations using i) Arrays ii) Linked list(Pointers).
5	Programs will be based on singly, doubly & circular linked list and its operations like i) Creation ii) Insertion iii)
	Deletion iv) Traversal.
6	Programs will be based on binary tree and its operations.
7	Write a program to implement the tree traversal methods
8	Write a program for shortest path diagram.
9	Micro project based on the syllabus.

Text Books

S.N	Title Authors		Edition	Publisher
1	Fundamentals of Data Structures in C++	E. Horowitz, D. Mehta,	2nd edition, 2008.	Silicon Press
		S. Sahni,		
2	Programming with C and Data structures	R.S. Bichkar	1st edition,2014.	Universities Press

S.N	Title	Authors	Edition	Publisher
1	Data Structures and Algorithm in Java	Goodrich, Tamassia	6th edition, 014.	Wiley publication
2	Introduction to Algorithms	T. H. Cormen, C. E.	3rd edition, 2009	MITPress
		Leiserson, R. L.Rivest,		
		C. Stein		
3	Murach's Java Programming	J. Murach	4th edition, 2012	Shroff Publishers
4	A Simplified Approach to Data Structures	V. Goyal, L. Goyal, P.	1st Edition, 2014	Shroff Publishers
		Kumar		

and	wohpande	January 2023	1.1	Applicable for 2022-23
Chairman - BoS	Dean – Academics	Date of Release	Version	

B. Tech. Scheme of Examination & Syllabus 2022-23 ARTIFICIAL INTELLIGENCE

	THIRE) SEM	IESTER					
Course Code	Course Name	Th	Tu	Pr	Credits		Evaluation	
V1303T	Eundamontals of Artificial Intelligence	2	1		4	CA	ESE	Total
A1302 I	Fundamentals of Artificial Intelligence	3	I	-	4	30	70	100
	Course Objectives				Col	Irse Outcome	۹	
This course is i	ntended	S	Student	s will	he able to		•	
 To gain To corr 	gain the basics of one of the most fascination fastest growing areas of Computer Science formulate artificial intelligence probler esponding to different applications.	ng ns		• [s • () s	Demonstrate tudents so t Comprehend trategies.	fundamenta hat they can ui the basic	l knowledge nderstand Al. Al probler	e to the m solving
 To algo 	apply artificial intelligence search strategie rithms to solve the problems.	es/		• A T	nalyze the echniques.	applicability	of various	searching
• To Artif	earn the applications and existing systems icial Intelligence in different areas.	of		• C • L te)istinguise b .earn diff echniques.	etween various erent knowl	s search stra ledge repi	tegies. resentation
Unit I Introduction to Task domain of	AI: Definition of AI, history & importance of AI, AI Characteristics, Introduction to Produ	AI, cu	rrent sta system	atus, s . Al P	scope, agen roblems and	ts, environmer d its state spa	nts, Turing te ce search, I	[5Hrs] st concept, ntroduction
Init II	his. Case study. Google Duplex (of latest offe	.)						[10Hrs]
Al Problems an Production chara Specialized prod	nd its Formulations: Defining the problems acteristics, Production system characteristics luction system, Problem solving methods -Pro	as a , and blem (state s Issues graphs,	space in the Match	search and design of s iing, Indexin	l representatio earch problem g and Heuristio	n, Production ns, Additional c functions.	problems.
Uniformed Sea Algorithms.	rch Strategies: Breadth-first search, Dep	th-first	searcl	h, Co	mparing un	iformed searc	h technique	s. Related
Unit IV								[8Hrs]
Informed searc ends analysis. S	h strategies: Generate-and-test, Hill climbing earch and optimization (gradient descent)	g, bes	t-first se	earch,	problem re	duction, constr	aint satisfact	ion, Mean-
Unit V								[7Hrs]
Introduction K representation. (Case study of A	nowledge Representation: Brief about Is Comparison between various KR. I Systems: MYCIN, Dendral, RI and others.	sues	in kn	owled	ge represe	ntation, Appro	oaches to	knowledge

Text Books

S.N	Title	Authors	Edition	Publisher
1	Artificial Intelligence	Elaine Rich, Kevin Knight, & Shivashankar B Nair	Third edition	McGraw Hill
2	Artificial Intelligence: A Practical Approach	Rajiv Chopra	First Edition	S Chand & Co Ltd
3	A First Course in Artificial Intelligence	Deepak Khemani	Sixth edition	McGraw Hill Education
4	Artificial Intelligence A modern approach	Stuart Russell, and Peter Norvig	Second Edition	Pearson

S.N	Title	Authors	Edition	Publisher					
1	Fuzzy Logic with Engineering application (Third edition) Timothy J.Rose	Timothy J.Rose	Third edition	Wiley					

and	wohpande	January 2023	1.1	Applicable for 2022-23
Chairman - BoS	Dean – Academics	Date of Release	Version	

B. Tech. Scheme of Examination & Syllabus 2022-23

ARTIFICIAL INTELLIGENCE

	THIRD SEMESTER									
Course Code	Course Name		Th Tu Pr		Th Tu		Credits		Evaluation	
A1202D	Fundamentals of Artificial Intelligence	СА	ESE	Total						
AIJUZP	Lab	-	-	2		25	25	50		
		,								
	Course Objectives				Course	e Outcomes				
This course is i	ntended	Stud	ents w	ill be a	able to					
•	To implement the theoretical concepts of Artificial intelligence	• Comprehend and explore Python programming language.				ming				
•	To compare the efficiency of various Al		•	Dem	onstrate basi	c Al problem	solving stra	tegies.		
search algorithms.			•	Imple Tech	ement the app niques.	plicability of v	arious sear	ching		
			•	Evalı repre	uate and esentation tec	implement hniques.	various	knowledge		

Implement real time AI based applications. ٠

Expt. No.	List of the experiment
1	Programs will be based on AI Problems.
2	Programs will be based on Production systems.
3	Programs will be based on uninformed search.
4	Programs will be based on informed search.
5	Programs will be based on constraint satisfaction.
6	Programs will be based on heuristic search procedure.
7	Micro project based on the syllabus.

Text Books

S.N	Title	Authors	Edition	Publisher
1	Artificial Intelligence	Elaine Rich, Kevin Knight, & Shivashankar B Nair	Third edition	McGraw Hill
2	Artificial Intelligence: A Practical Approach	Rajiv Chopra	First Edition	S Chand & Co Ltd
3	A First Course in Artificial Intelligence	Deepak Khemani	Sixth edition	McGraw Hill Education
4	Artificial Intelligence A modern approach	Stuart Russell, and Peter Norvig	Second Edition	Pearson

S.N	Title	Authors	Edition	Publisher	
1	A Classical Approach to Artificial	Munesh Chandra	Second Edition	Khanna Publishing	
	Intelligence	Trivedi		House, Delhi.	
2	Artificial Intelligence	Saroj Kaushik	First Edition	Cengage Learning	
				inula, 2011 5.	
3	Artificial Intelligence: Foundations for	David Poole and Alan	Second Edition	Cambridge University	
	Computational Agents	Mackworth		Press 2010	

and	wohpande	January 2023	1.1	Applicable for 2022-23
Chairman - BoS	Dean – Academics	Date of Release	Version	

B. Tech. Scheme of Examination & Syllabus 2022-23 ARTIFICIAL INTELLIGENCE

	THIRD SEMESTER									
	Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation			
	AI303T	Computer Networking	3	1	1 -	4	CA	ESE	Total	
							30	70	100	

	Course Objectives		Course Outcom	es	
This co	ourse is intended	Students wi	ill be able to		
Unit I Unit I Unit odu Wide Au media t	 is course is intended To delivers the fundamentals of computer network To discuss and focuses on network architectures, protocols and applications, techniques for encoding and modulation. Usearn and compare the various real-world networks. Learn and compare the various protocols mode along with addressing scheme. Classify and Illustrate the different techniques digital data transmissions at physical layer a routing at network layer. Analyze and Design simple computer networks. 				
optical f	iber and wireless.			Including copper cables,	
Data Li Codes; Repeat.	ink Layer and Logical Link Control (LLC Reliable transmission and Automatic Repe Performance analysis of ARQ protocols. Exa) sub-layer: Framing; Err eat Request (ARQ) protoc ample protocols such as HI	ror control including Bit-pa cols including Stop-and-Wa DLC and PPP.	rity, CRC and Hamming it, Go-back-N, Selective	
Unit III	· · · · · ·			[7Hrs]	
Medium CSMA/0 Etherne	n Access Control (MAC) sub-layer: Shar CD, Ethernet and IEEE 802.3; IEEE 802.11 t; Related protocols such as ICMP, NAT, AR	ed media systems; Bus, including CSMA/CA proto P and RARP.	Star and Ring topologies; ocols; Performance analysi	TDMA, FDMA, CSMA, s; Shared and Switched	
Unit IV	· · · · · · · · · · · · · · · · · · ·			[7Hrs]	
Networ protocol includin	k Layer: Internet Protocol (IP) suite; Hierard Is including distance-vector and link-state ap g Dijkstra's algorithm and distributed Bellmar	chical network architecture proaches; Interior and Exte I-Ford algorithm; Example p	es; IPv4 and IPv6 addressir erior Gateway Protocol conc protocols: OSPF, RIP, BGP	ng and headers; Routing cepts; Routing Algorithms	
Unit V	<u> </u>			[7Hrs]	
Transpo headers Interface	ort Layer: Reliable end-to-end transmission s and congestion control; TCP variants such e and Socket programming; Example protoco	protocols; UDP header; De as Reno, Tahoe, Vegas, (Ils such as DNS, SMTP, F1	etails of TCP header and op Compound and CUBIC. Ap IP, and HTTP.	peration including options oplication Layer: Socket	
SN	Titlo	Authors	Edition	Publisher	
1	Computer Networking - A top- down approach,.	Kurose and Ross,	Seventh Edition	Pearson, 2017	
2	Computer Networks	Andrew S. Tanenbaum	Fifth Edition	Pearson Education India, 2013	
3	Computer Networks, A Systems Approach	Peterson and Davie	5th ed	Elsevier, 2011	

Refere	nce Books			
S.N	Title	Authors	Edition	Publisher
1	Computer Networks: An Open Source	Ying-Dar Liu, Ren-		McGraw-Hill, 2011.
	Approach	Hung Hwang, Fred	Second Edition	
		Baker		
2	Unix Network Programming	W.Richard Stevens, Bill	Third Edition,	Addison-Wesley
		Fenner and Andrew R		Professional, 2003

and	wohpande	January 2023	1.1	Applicable for 2022-23
Chairman - BoS	Dean – Academics	Date of Release	Version	

B. Tech. Scheme of Examination & Syllabus 2023-24

ARTIFICIAL INTELLIGENCE THIRD SEMESTER

	THIRD SEMESTER							
Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation		
AI304P	Object Oriented Programming Lab	-		2	1	CA	ESE	Total
			-			25	25	50

Course Objectives	Course Outcomes				
This course is intended	Students will be able to				
• To strengthen problem solving ability by using the characteristics of an object-oriented approach.	 Articulate the principles of object oriented programming using C++ 				
• To design applications using object oriented features	• Learn function overloading, constructor overloading, operator overloading, polymorphism & its uses in programming.				
	• Implement inheritance concepts and its use for application development.				
	Analyze of dynamic memory allocation and its use for software development				
	Implement concept of file handling in real life problems				
	 Implement a project for real world problems 				

Expt. No.	List of the experiment
1	Fundamental of constructs in C++ including Classes and Objects
2	Constructors and Destructors
3	Types of Overloading
4	Types of inheritance
5	Pointers and Inheritance
6	Virtual Functions
7	File streams
8	Micro project based on the Object Oriented Programming concepts.

S.N	Title	Authors	Edition	Publisher
1	Object –oriented Programing Using C++	Ramesh	1 st Edition	PEARSON
	and Java	Vasappanavar, Anand		
		Vasappanavar ,		
		Gautam Vasappanavar		
2	Mastering C++	A.R.Venugopal,	2 nd Edition	ТМН
		Rajkumar, T.		
		Ravishanker		
3	Computer Science A Structured	Behrouz A. Forouzan,	2 nd Edition	CENGAGE Learning
	Approach Using C++	Richard F. Gilberg		

and	wohpande	October 2022	1	Applicable for 2022-23
Chairman - BoS	Dean – Academics	Date of Release	Version	

B. Tech. Scheme of Examination & Syllabus 2022-23

ARTIFICIAL INTELLIGENCE

THIRD SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation		
H102	Universal Human Values-2	2			3	CA	ESE	Total
		3	-	-		30	70	100

Course Objectives	Course Outcomes
This course is intended	Students will be able to
• Development of a holistic perspective based on self- exploration about themselves (human being), family, society and nature/existence.	By the end of the course, students are expected to become more aware of themselves, and their surroundings (family, society, nature); they would become more responsible in life,
 Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence Strengthening of self-reflection. Development of commitment and courage to act 	and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind. They would have better critical ability. They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society). It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.

Unit I [6Hrs] Purpose and motivation for the course, recapitulation from Universal Human Values-I, Self-Exploration-what is it? - Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration, Continuous Happiness and Prosperity- A look at basic Human Aspirations, Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority, Understanding Happiness and Prosperity correctly-A critical appraisal of the current scenario, Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Unit II [6Hrs] Understanding human being as a co-existence of the sentient 'I' and the material 'Body', Understanding the needs of Self ('I') and 'Body' - happiness and physical facility, Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer) ,Understanding the characteristics and activities of 'I' and harmony in 'I' , Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Health.

Unit III [6Hrs] Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship. Understanding the meaning of Trust; Difference between intention and competence, Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals, Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family. [6Hrs]

Unit IV

Understanding the harmony in the Nature, Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature, Understanding Existence as Co-existence of mutually interacting units in all-pervasive space, Holistic perception of harmony at all levels of existence. Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

[6Hrs]

Unit V

Natural acceptance of human values, Definitiveness of Ethical Human Conduct, Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order, Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems., Case studies of typical holistic technologies, management models and production systems, Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations, Sum up

Am glassie	wohpande	January 2023	1.1	Applicable for 2022-23
Chairman - BoS	Dean – Academics	Date of Release	Version	

ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY,NAGPUR (An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University) B. Tech. Scheme of Examination & Syllabus 2022-23 ARTIFICIAL INTELLIGENCE

Text Books

S.N	Title	Authors	Edition	Publisher
1	Human Values and Professional Ethics	Gaur, Sangal, Bagaria	2010	Excel Books, New Delhi

S.N	Title	Authors	Edition	Publisher
1	Jeevan Vidya: Ek Parichaya	A Nagaraj	1999	Jeevan Vidya
				Prakashan,
				Amarkantak.
2	Human Values	A.N. Tripathi	2004	New Age Intl.
				Publishers, New Delhi
3	The Story of My Experiments with Truth	M. K Gandhi		

Am Alasis.	wohpande	January 2023	1.1	Applicable for 2022-23
Chairman - BoS	Dean – Academics	Date of Release	Version	