ST

ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY, NAGPUR

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

SEVENTH SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	E	Evaluation	
21ET701T	Mianawaya Enginaaying	2	Λ	0	2	CA	ESE	Total
21E1/011	Microwave Engineering	3	U	U	3	30	70	100

Course Objectives	Course Outcomes
1) To introduce basic microwave tubes, limitations and their applications	 Demonstrate different types of microwave tubes and applications Define and identify and compare different types of microwave
To understand analysis of different microwave devices and measurement techniques To learn basics of microwave communications and RADARs	components. 3) Demonstrate and classify different types of microwave solid state devices and their applications 4) Identify different microwave measurement techniques 5) Illustrate fundamentals of RADAR and its types.

UNIT- I: Microwave Liner beam tubes	[8 Hrs]

Microwave Liner beam tubes: Importance of UHF & Microwave frequency range, Causes of failure of conventional tubes at high frequency, two cavity klystron amplifier, Reflex klystron oscillator, slow wave structure, traveling wave tube

Unit -II Microwave cross field tubes [8 Hrs]

Microwave cross field tubes: Magnetron: cylindrical magnetron, parallel plate magnetron, voltage tunable magnetron, Forward wave cross field amplifier, backward wave oscillator.

Unit -III Microwave components & Scattering matrices [7 Hrs]

Microwave components & Scattering matrices: Scattering matrices of transmission lines, microwave junction and tees, Attenuators, Tees, Directional couplers, Circulators, Isolators, Gyrators, Phase shifter, Cavity resonator, Transmission line resonator.

UNIT- IV: Microwave measurement [6 Hrs]

Microwave measurement: Microwave power measurement, Frequency measurement, VSWR measurement, Attenuation measurement, Impedance and Q factor measurement.

Unit -V: Applications of Microwave Engineering [7 Hrs]

Basic principles and fundamentals of Radar, block diagram of basic radar, classification, radar performance factors, radar range equation, factors influencing maximum range, effects of noise, Types of Radar, applications of radar

Text Books

S.N	Title	Authors	Edition	Publisher
1	Microwave Devices and Circuits	S.Y. Liao	-	Prentice Hall India
2	Principles of Radar Engineering	Skolnik	-	McGraw Hill Publications
3	Microwave Engineering	David M. Pozar	-	John Willey & Sons.

S.N	Title	Authors	Edition	Publisher
1	Microwave Engineering	G.S.Raghuwanshi	-	Cengage India
2	Microwave Engineering	R.S. Rao	-	PHI Publications
3	Microwave and Radar Engineering	M.Kulkarni	-	Umesh Publication

-McD	workpande	July 2024	1	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

B. Tech. Scheme of Examination & Syllabus 2021-22 **ELECTRONICS AND TELECOMMUNICATION ENGINEERING**

SEVENTH SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	E	Evaluation	
21ET701P	Microsycya Engineering Lab			2	1	CA	ESE	Total
21E1/01P	Microwave Engineering Lab	-	-		1	25	25	50

	Course Objectives		Course Outcomes			
1.	To understand the basic concepts of	1)	To apply the concept of microwave engineering to demonstrate and			
	Microwave Sources		setup the experiment			
2.	To understand the basic properties of	2)	To understand the the working of microwave tube practically and			
	Microwave components.		formulate the characteristic			
		3)	To analyze, interprets and conclude the properties of various			
			microwave components/devices.			
		4)	To understand and classify the different methods of VSWR,			
			Attenuation measurement at high frequency			

List of Experiment

1	To Study various Components of Microwave Test Bench.
2	To plot the characteristics of Klystron Tube and to determine its electronic tuning range and Verify the power frequency
3	To verify the V-I characteristics of Gunn diode. (Output power and Frequency as a function of Voltage)
4	To verify the properties of Magic Tee, H plane & E plane Tee
5	To Study & verify the functions of Isolator / Calculator by measuring the insertion loss and isolation
6	To Study & verify the functions of Attenuator (Fixed and Variable type) by Attenuation
7	Formulate different parameters of Multi Hole Directional Coupler
8	To Measure Standing Wave-Ratio (VSWR) and Reflection Coefficient.
9	Formulate different parameters of antenna

Reference Books

Lab Manual

S.N	Title	Authors	Edition	Publisher
1	Microwave Engineering	G.S.Raghuwanshi	-	Cengage India
2	Microwave Engineering	R.S. Rao	-	PHI Publications
3	Microwave and Radar Engineering	M.Kulkarni	-	Umesh Publication

-Hc 2	workpande	July 2024	1	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

B. Tech. Scheme of Examination & Syllabus 2021-22

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

SEVENTH SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	E	valuation	
21ET702T	Digital Signal Processors and	2			2	CA	ESE	Total
21E1/021	Architecture	3	-	-	3	30	70	100

	Course Objectives		Course Outcomes
1)	To provide an understanding of the	5)	Distinguish between the architectural features of General-purpose
	fundamentals of DSP techniques		processors and DSP processors.
2)	To introduce architectural features of	6)	Describe the architectural details of programmable Digital Signal
	programmable DSP Processors.		Processors TMS320C54x.
3)	To develop the programming knowledge using	7)	Describe the architectural details of advanced Digital Signal
	Instruction set of DSP Processors.		Processors TMS320C6x.
4)	To give practical examples of DSP Processor	8)	Illustrate various addressing modes of DSP TMS320C54x.
	architectures for better understanding.	9)	Apply the knowledge of mnemonics to determine various operations
			performed by processor.

UNIT- I: FUNDAMENTALS OF PROGRAMMABLE DSPs	[9 Hrs]				
Multiplier and Multiplier accumulator, Modified Bus Structures and Memory access in P-DSPs, Multiple access memory, Multiported memory, VLIW architecture, Pipelining, Special Addressing modes in P-DSPs, Von Neumann and Harvard Architecture.					
Unit -II PROGRAMMABLE DIGITAL SIGNAL PROCESSOR	[6 Hrs]				
Architecture of TMS320C54X, Bus Structure & memory, CPU, ALU, Multiplier, CSSU.					
Unit -III ADVANCED DIGITAL SIGNAL PROCESSOR	[7 Hrs]				
Internal Architecture of TMS320C6x, CPU, and General Purpose register files, Functional Uni TMS320C54X and TMS 320 C6x.	ts. Comparison of features of				
UNIT- IV: ADDRESSING MODES OF TMS320C54X	[6 Hrs]				
Addressing modes: Immediate, Absolute, Accumulator, Direct, Indirect, Memory mapped and Stack addressing, Pipelining.					
Unit -V: PROGRAMMING TMS320C54X [8 Hrs]					
Assembly language instructions of TMS320C54x: Arithmetic, Logical. Control, Move, Conditional, Bit manipulation instructions. Applications of TMS320C54X.					

Text Books

S.N	Title	Authors	Edition	Publisher
1	Digital Signal Processors, Architecture,	B. Venkata Ramani	-	McGraw-Hill
2	DSP Implementation using DSP	Avtar Singh,	-	Thamson
3	Digital Signal Processing - A Practical	E.C.Ifeachor and B.W	-	Pearson Publication

S.N	Title	Authors	Edition	Publisher
1	DSP Processor Fundamentals,	Lapsley et al.	-	S. Chand & Co
2	Digital signal processing	Jonathen Stein	-	Wiley
3	Digital Signal Processing	S.K. Mitra	-	Tata McGraw-Hill

-Hell	woshpande	July 2024	1	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY, NAGPUR

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22 ELECTRONICS AND TELECOMMUNICATION ENGINEERING

SEVENTH SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	E	Evaluation	
21ET702P	Digital Signal Processors and			2	1	CA	ESE	Total
21E1/02P	Architecture Lab	_	-		1	25	25	50

Course Objectives	Course Outcomes
1. To implement the DSP algorithms DSP	1. To study architectures of PDSPs of different families and compare
processors having specially tailored	them. 2. To develop programs for DSP operations like filtering etc., using
architectures.	MATLAB.
2. To enable students to understanddifferent	3. To write assembly language program and observe results using code composer studio.
processors architectures and apply them in system design.	4. To implement DSP algorithms using development kits like DSK 5416 or DSK 6713.

Minimum 8 practical based on the following list.

Experiment List
Experiment 1 : To Compare architectures of TMS320C54XX & TMS320C6X
Experiment 2: To generate basic signals using TMS320C54XX
Experiment 3: Write an ALP using instruction of TMS processors to add two numbers.
Experiment 4 : Write ALP to subtract two numbers.
Experiment 5: Write an ALP to multiply two numbers of unsigned 32 bit data.
Experiment 6: Write an ALP to divide 16 -bit data by an eight bit data.
Experiment 7: Implementation of FFT using code Composer studio.
Experiment 8: To implement Interpolation filter by Matlab.
Experiment 9: To implement Decimation filter by Matlab.
Experiment 10: To design FIR filter using MATLAB and find finite word length effect & cross verify using DSP processor.
Experiment 11. To design IIR filter using MATLAB and find finite word length effect & cross verify using DSP Processor.

Reference: Lab Manual

S.N	Title	Authors	Edition	Publisher
1	DSP Processor Fundamentals,	Lapsley et al.	-	S. Chand & Co
2	Digital signal processing	Jonathen Stein	-	Wiley
3	Digital Signal Processing	S.K. Mitra	-	Tata McGraw-Hill

-HcD	workpande	July 2024	1	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

B. Tech. Scheme of Examination & Syllabus 2021-22

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

SEVENTH SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	E	Evaluation	
21ET702T(:)	Professional Elective – IV (CMOS	2	0	0	2	CA	ESE	Total
21ET703T(i)	VLSI Design	3	U	U	3	30	70	100

	Course Objectives	Course Outcomes
1.	To learn CMOS device parameters and characteristics.	On completion of the course students will be able to,
2.	To learn and design combinational and sequential	Design PMOS and NMOS transistor
	circuits using CMOS.	2. Implementation different combinational logic circuits.
3.	To explore CMOS processing technology	3. Design CMOS transistor
4.	To learn physical design of logic gates.	4. Design CMOS combinational and sequential logic design
		5. Design layout for various circuits.

Unit I : MOS TRANSISTORS	[8 Hrs]
nMOS enhancement and pMOS enhancement transistor, threshold voltage, body small signal model for MOS transistor.	effect, MOS effect, MOS device equations,
Unit II : CMOS INVERTER:	[8 Hrs]
Principle of operation, dc characteristics, transient characteristics, n/p ration, noise gate, introduction to Bi-CMOS inverter.	e margin, static load MOS inverter, transmission
Unit III: Study of CMOS LOGIC	[7 Hrs]
Study of combinational logic, gates, compound gates, multiplexers, and memory e	lements using CMOS technology.
Unit IV: Circuit Characterization and Performance Estimation	[6 Hrs]
Resistance and capacitance estimation, switching characteristics, power dissipation	on, charge sharing.
Unit V: VLSI DESIGN:	[6 Hrs]
VLSI processing integration, layout design rules, and stick diagram representation transistor sizing, fan-in, fan-out and physical design of simple logic gates, CMOS	

Text Books

S.N	Title	Authors	Edition	Publisher
1	CMOS VLSI Design: A Circuits and Systems Perspective	Neil H.E. Weste, David Harris	4th Edition	Addison-Wesley
2	Design of Analog CMOS Integrated Circuits	Behzad Razavi	2nd Edition	McGraw-Hill
3	Digital Integrated Circuits	Jan M. Rabaey	2nd Edition	Prentice Hall

S.N	Title	Authors	Edition	Publisher
1	CMOS Digital Integrated Circuits:	Sung-Mo Kang, Yusuf	2nd Edition	McGraw-Hill
	Analysis and Design	Leblebici		
2	CMOS Analog Circuit Design	Phillip E. Allen,	3rd Edition	Oxford University Press
		Douglas R. Holberg		-
3	VLSI Design Techniques for Analog and	Randall L. Geiger,	1st Edition	McGraw-Hill
	Digital Circuits	Phillip E. Allen, Noel		
		R. Strader		

-HcQ	woshpande	July 2024	1	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

1

ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY, NAGPUR

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

SEVENTH SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	E	Evaluation	
21ET703T(ii) Professional Elective – IV (Digital	2	0	0	2	CA	ESE	Total	
21E1/031(II)	Image Processing	3	U	U	3	30	70	100

Course Objectives	Course Outcomes
 Provide the student with the fundamentals of digital image processing. Introduce the students to some advanced topics in digital image processing. Give the students a useful skill base that would allow them to carry out further study in the field of image processing. 	 Demonstrate understanding of the basic concepts of two-dimensional signal acquisition, sampling, and quantization. Demonstrate understanding of the fundamental image enhancement histogram algorithms and spatial filtering techniques, including linear and nonlinear methods. Describe redundancy and implementation various redundancy coding algorithms. Demonstrate understanding of the fundamentals of lossy and lossless image compression models Classify and represent discontinuity, boundary and edge using
	concepts of Image segmentation.

Unit I Digital Image Fundamentals

[6 Hrs]

Components of Image Processing System., Image Sensing and Acquisition, Image Sampling & Quantization, Spatial and Gray Level Resolution, Basic Relationships between Pixels. Statistical parameters, Measures and their significance, Mean, standard deviation, variance, SNR, PSNR, Color models

Unit II Unit2: Image Enhancement

[8 Hrs]

Enhancement in Spatial Domain: basic gray level transformations, histogram processing, equalization, Arithmetic and logical operations between images, Basics of spatial filtering, smoothening and sharpening spatial filters, Image Enhancement in frequency Domain: smoothening and sharpening frequency domain filters, 2D-DFT, FFT

Unit III Image Coding

[8 Hrs]

Image Coding Fundamentals, - redundancy: coding, interpixel, psychovisual, fidelity criteria, Basic compression methods Error Free Compression - variable length, bit plane,

Unit IV Image Compression

[7 Hrs]

Image Compression Model, fundamentals, LZW arithmetic Lossless Predictive, Lossy Compression- Lossy Predictive. Fundamentals of JPEG, MPEG, fractals.

Unit V Image Analysis

[7 Hrs]

Segmentation: Point, line, Hough Transform, Edge detection, Boundary detection and Thresholding, Region Based segmentation. Representation & Description: Boundary representation by chain codes, signature & skeleton Boundary descriptors, shape number, Fourier descriptors, Basics of Regional descriptor, boundary representation by chain codes and B splines, Morphological Image Processing: Dilation, Erosion, Opening, Closing on Binary Images.

Text Books

S.N	Title	Authors	Edition	Publisher
1	Digital Image Processing	Gonzalez and Woods	-	Pearson Education
2	Fundamentals of Digital Intake	Arthur Weeks Jr	-	PHI
3	Digital Image Processing	S Jayaraman	-	Tata McGraw Hill
4	Fundamentals of Digital Image	A. K. Jain		Pearson Education

S	.N	Title	Authors	Edition	Publisher
	1	Digital Image Processing	Pratt William		John Wiley & Sons
	2	Image Processing, Analysis and Machine Vision	Milan Sonka, Vaclav Hlavac and Roger Boyle	Second Edition	Thomson Learning
	3	Image Processing analysis & Machine Vision	Milan Sonka, Vaclav		Cenage Learning

-Hets	washpande	July 2024	1	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

B. Tech. Scheme of Examination & Syllabus 2021-22 **ELECTRONICS AND TELECOMMUNICATION ENGINEERING**

SEVENTH SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	E	Evaluation	
	Professional Elective – V (VLSI			_	CA	ESE	Total	
21ET704T(i)	Signal Processing)	3	-	-	3	30	70	100

Course Objectives	Course Outcomes
To learn pipelining & parallel processing techniques	To demonstrate various methodologies to opti mize power of VLSI design.
To understand folding & unfolding techniques in multirate s ystem	To demonstrate various methodologies to opti mize power of VLSI design.
3. To address folding techniques used to design time multiplex ed architecture.	 To design Real Time processing system using Unfolding (loop unrolling) techniques. To design Real Time processing system using folding (time multiplexing) techniques. To design & analyze fast and iterated convolution techniques.

Unit 1: Pipeline and Parallel Processing	[7 Hrs]	
Introduction, pipeling of FIR Digital filters Parallel process	ng, Pipelining and parallel processing for low power.	
Unit II: Retiming	7 Hrs]	
Introduction, Definition and properties, solving system of in	equalities, retiming techniques.	
Unit III: Unfolding	[7 Hrs]	
Introduction, algorithms for unfolding, Properties of unfold	ng, Critical path, unfolding and retiming Application of unfolding	ng.
Unit IV:Folding	[7 Hrs]	
Introduction Folding Transformation, Register minimization	n in folded architectures, Folding in Multirate systems.	
Unit V: Fast Convolution	[8 Hrs]	
Introduction, Cook-Toom algorithm, Winogard algorithm,	Cyclic Convolution	

Text Books

S.N	Title	Authors	Edition	Publisher
1	VLSI Digital Signal Processing Systems	Keshab K. Parhi	2	Wiley-
2	Analog VLSI signal and information processing	Mohammed Ismail		McGraw Hill

S.	N.	Title	Authors	Edition	Publisher
1	1	VLSI Digital signal processing system Design and	Keshab. Parthi		Wiley
		implementation			

-HcED	woshpande	July 2024	1	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

3

ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY, NAGPUR

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

SEVENTH SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	E	Evaluation	
21EEE04E(**)	Professional Elective – V (Bio		0	0	2	CA	ESE	Total
21ET704T(ii)	Signal Processing)		3	30	70	100		

	Course Objectives		Course Outcomes
1)	Compare the basic concepts of signals and	1)	Analyse the signals in different statistical methods.
	analyze time and frequency based transforms.	2)	Apply the filters in bio signal
2)	To brush the basics of digital filters.	3)	Illustrate the transforms enactments on bio signal. Categorize the
3)	Students have to investigate the events in the		digital signal processor with its application aspects
	signals.	4)	Organize the operation of processors and its special applications
4)	Interpret the basic architecture of the DSP		
	processor TMS 320 and its implementation,		
	applications		

Unit1: Introduction to Biomedical Signal Analysis& Time- [7 hrs

Introduction to signals - Time domain - Statistical and information theoretic analysis, Fourier spectrum of bio signals, Hilbert transform and its applications - Empirical mode decomposition and empirical wavelet transform - correlation analysis and power spectral estimation.

Ûnit 2:Digital Filters [7 hrs]

Types of artefacts and noise, Time domain filters, frequency domain filters, notch and comb filters, optimal filtering, adaptive filters, Signal decomposition based filtering

Unit 3: Event Detection and Feature Extraction Techniques

Signal segmentation - Envelop extraction and analysis, temporal, spectral, statistical, information theoretic and cross spectral features - Waveform complexity.

Unit 4: Digital Signal Processors

[7 hrs]

[8 hrs]

General purpose DSP processors, architecture, hardware configuration, software development tools - Implementation considerations, fixed point DSP processors, floating point DSP processors.

Unit 5: TMS320 Family of DSP processors Architecture

- Functional units Pipelining-Registers Linear and Circular addressing Types of instructions Sample Programs Real Time Implementation on DSP processors Overview of Black Fin Processors, Estimation of heart rate in ECG Auto-regressive model
- Estimation of spectrum of thoughts in EEG

Text Books

S.N	Title	Authors	Edition	Publisher
1	Biomedical Signal Analysis	Rangaraj M.	2	Wiley-IEEE Press
2	Real Time Signal Processing Based on	Nasser Kehtarnavaz	2	Elsevier

S.N	Title	Authors	Edition	Publisher
1	Digital Signal Processing and Applications with the C6713 and C6416 DSK	Rulph Chassaing	1	Wiley

-HcQ	workpande	July 2024	1	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

ST. VINCENT PALLOTTI COLLEGE OF ENGINEERING & TECHNOLOGY, NAGPUR

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

SEVENTH SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	E	valuation	
21ET761O	Open Elective – III (Design of	2	0	_	2	CA	ESE	Total
21E1701O	` §	3	U		3	30	70	100
	Solar Photovoltaic Systems)							

Course Objectives	Course Outcomes
To explain the concept of Solar PV systems	1) To understand the basics of solar PV cells, modules, arrays and systems with balance of components.
2) To explain the components of Solar PV systems	 To analyze sun geometry and impact of sun position on performance of PV systems.
3) To understand the concept of solar PV systems designing through	3) To explain the concept of maximum power point tracking system for best performance of solar PV systems.
different applications	4) To analyze the concept of designing solar PV systems by different design examples like PV water pumping, DC fan running, Peltier cooling, Grid connected systems with simple pay back and life cycle costing
	5) To design Solar PV small projects through project activity.

UNIT- I: Photovoltaic Systems

[8Hrs]

Pv cells, series and parallel interconnection, solar modules, solar arrays, power and energy output from solar PV systems, sizing PV balance of solar PV systems, lead acid battery, Lithium Ion battery, lithium phosphate battery PV -battery interfaces, dc-ac converters(inverters), inverter types, standalone PV systems, grid connected pv systems, hybrid PV systems

Unit -II All about sun [8 Hrs]

Energy from sun, solar radiation, incident energy estimation, sun geometry ,sun TRACKING, one axis tracking, two axes tracking, estimating solar RADIATION empirically, measurement OF solar radiation

Unit -III Maximum Power Point Tracking

[8 Hrs]

Concept of MPPT, MPPT algorithms, MPP charging, DC-DC converters, switching techniques, buck converter, boost converter, buck boost converter, soft switching concept, efficiency calculations

UNIT- IV: Design methodology of Solar PV systems and applications

[8 Hrs]

Design of unregulated and regulated standalone PV system with DC load, Wire sizing in PV systems, Precise sizing, regulated standalone system with battery and DC load, Regulated standalone system with battery and AC and DC load, Regulated hybrid system PV and Water pumping, Peltier Cooling, PV Grid interface, Simple payback period, Life Cycle Costing

Unit V:- Solar PV system Design projects

4Hrs.

PV powered DC fan without battery, Regulated standalone system with DC load using MPPT, Design of PV powered DC pump, Solar mobile charging system, solar powered Reverse osmosis water purifier system, Solar powered EV battery charger

Text Books

S.N	Title	Authors	Edition	Publisher
1	Solar Photovoltaics:- Fundamentals, Technologies and applications	Dr. Chetan Singh Solanki	2nd	PHI
2	Photovoltaic Systems: Analysis and Design	Mukerjee A. K., Nivedita		PHI
3	Solar Cells from B to Advanced Systems	Chenming, H. and White,		McGraw Hill Book

S.N	Title	Authors	Edition	Publisher
1	Solar Cell Array Design	Ruschenbach, HS		

-Hell	woshpande	July 2024	1	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25