

THIRD SEMESTER

	e Code	Course Name		Th	Tu	Pr	Credits		Evaluation	
220	S201T	Mathematics for Data Scie	nco	4			4 -	CA	ESE	Total
230.	33011		lice	4	-	•	4	30	70	100
		Course Objectives					Cou	se Outcome	s	
This co	urse is int	ended		S	tuden	ts will	be able to)		
•	l o famil	iarize the students with concepts of	f logic &		•	Recog	inize when L	.ogic, sets, fu	nctions are ap	ppropriate
-	Sets.	dupp the appontial papponts of you	tor oppoor			to forn	nulate & solv	e real world	problems	0
•	To Intro	a the inference using concepts of vec	lor spaces		•	Apply	the concept	s of vector sp	aces to Data	Science.
•	and infe	e the interence using concepts of o	lescriptive		•	Use tr	le concepts	or sampling	& estimation	i theory in
					•	l earn	the techniqu	lerice.	hypothesis a	nd apply it
					•	to test	the significa	ance of variou	is data sampl	es
					•	Use st	atistical met	hods and too	ls in engineer	ring
						proble	ms		5	0
Unit I										[8Hrs]
Mather	natical lo	gic & Set theory: Review of propos	sitions and	logica	l opera	tions, I	Review of se	ts, Types and	d operations of	on sets,
Inclusio	on Exclusio	on Principle		0	•				•	·
Relatic	ons and fu	nctions: Ordered pairs and n-tuple	es, Types o	of relati	ions, C	ompos	ite relation,	Definition of f	unction, Com	position
of funct	tions, Type	es of functions.								
Unit II	-									[8Hrs]
Vector	Spaces:	Definition, Sub spaces, Basis, dim	ension, Ra	ange S	pace a	nd Rai	nk; Null Spa	ce and Nullity	y; Rank nullity	y theorem.
Linear	transforma	ation; Matrix Representation of a lir	near transf	ormati	on Line	ear Ope	erators on R	" and their re	presentation	as square
motrico	o lovortibl	a linear anarotar Invaria of non ai		ricco						
matrice	s Invertibl	e linear operator, Inverse of non-si	ngular mat	rices.						[8Hrs]
matrice Unit III Sampli	ing & Esti	e linear operator, Inverse of non-sig	ngular mat	rices.	inferer		moling with	and without r	enlacement	[8Hrs]
matrice Unit III Sampli	ing & Esti	e linear operator, Inverse of non-signation Theory: Population and sa	ngular mat ample, Sta	tistical	inferen	nce, Sa	mpling with	and without r	eplacement,	[8Hrs] Population
matrice Unit III Sampli parame estimat	ing & Esti eters, sam es. Point e	e linear operator, Inverse of non-sin mation Theory: Population and sa nple statistics, Sampling distributi estimates and interval estimates. C	ample, Sta ample, Sta ion of me	tistical ans, S	inferer Samplin	nce, Sa ng dist eans. (mpling with ribution of Confidence i	and without r proportions. nterval for pro	eplacement, Unbiased an	[8Hrs] Population ad efficient
matrice Unit III Sampli parame estimat Unit IV	ing & Esti eters, sam es, Point e	e linear operator, Inverse of non-sin mation Theory: Population and sa aple statistics, Sampling distributi estimates and interval estimates, C	ngular mat ample, Sta ion of me onfidence	rices. tistical ans, S interva	inferen Samplin I for me	nce, Sa ng dist eans, C	mpling with ribution of Confidence i	and without r proportions. nterval for pro	eplacement, Unbiased an oportions.	[8Hrs] Population ad efficient [8Hrs]
matrice Unit III Sampli parame estimat Unit IV Hypoth	es Invertibl ing & Esti eters, sam es, Point e	e linear operator, Inverse of non-sig mation Theory: Population and sa pple statistics, Sampling distributi estimates and interval estimates, C	ngular mat ample, Sta ion of me confidence ance, Con	rices. tistical ans, S interva	inferen Samplin I for me	nce, Sa ng dist eans, C	mpling with ribution of Confidence in	and without r proportions. nterval for pro	eplacement, Unbiased an oportions.	[8Hrs] Population ad efficient [8Hrs] vpothesis.
matrice Unit III Sampli parame estimat Unit IV Hypoth Type-I	es Invertibl ing & Esti eters, sam ees, Point e nesis test and Type-	e linear operator, Inverse of non-sim mation Theory: Population and sample statistics, Sampling distributi estimates and interval estimates, C ing: Introduction, Level of significant Il errors, , Testing a hypothesis, t-	ngular mat ample, Sta ion of me onfidence ance, Con Test, Z-tes	rices. tistical ans, S interva fidence	inferen Samplin I for mo e limits st, chi-s	nce, Sa ng dist eans, C ,, Hypo square	mpling with ribution of Confidence in othesis, Null test.	and without r proportions. nterval for pro hypothesis,	replacement, Unbiased an oportions. Alternative h	[8Hrs] Population ad efficient [8Hrs] ypothesis,
matrice Unit III Sampli parame estimat Unit IV Hypoth Type-I Unit V	es Invertibl ing & Esti eters, sam res, Point e nesis test and Type-	e linear operator, Inverse of non-sin mation Theory: Population and sa nple statistics, Sampling distributi estimates and interval estimates, C ing: Introduction, Level of significant Il errors, , Testing a hypothesis,, t-	ngular mat ample, Sta ion of me onfidence ance, Con Test, Z-tes	rices. tistical ans, S interva fidence	inferen Samplin I for me e limits st, chi-s	nce, Sa ng dist eans, C ,, Hypo square	mpling with ribution of Confidence in othesis, Null test.	and without r proportions. nterval for pro hypothesis,	replacement, Unbiased an oportions. Alternative h	[8Hrs] Population nd efficient [8Hrs] ypothesis, [8Hrs]
matrice Unit III Sampli parame estimat Unit IV Hypoth Type-I Unit V Statisti	es Invertibl ing & Esti eters, sam es, Point of nesis test and Type- ics: Mean	e linear operator, Inverse of non-sim mation Theory: Population and sample statistics, Sampling distributi estimates and interval estimates, C ing: Introduction, Level of signific Il errors, , Testing a hypothesis,, t-	ngular mat ample, Sta ion of me onfidence ance, Con Test, Z-tes Standard	rices. tistical ans, S interva fidence tt, F-tes deviat	inferen Samplin I for mo e limits st, chi-s	nce, Sa ng dist eans, C ,, Hypo square uartile,	mpling with ribution of Confidence in othesis, Null test. Decile, Pere	and without r proportions. hterval for pro hypothesis, centiles, Res	replacement, Unbiased an oportions. Alternative h idual MSE ar	[8Hrs] Population ad efficient [8Hrs] ypothesis, [8Hrs] nd MAE, ,
matrice Unit III Sampli parame estimat Unit IV Hypoth Type-1 Unit V Statisti Root M	ing & Esti eters, sam es, Point e nesis test and Type- ics: Mean ean Squa	e linear operator, Inverse of non-sin mation Theory: Population and sa aple statistics, Sampling distributi estimates and interval estimates, C ing: Introduction, Level of signific Il errors, , Testing a hypothesis,, t- , Median, Mode, Mean deviation, re error, Coefficient of determinatio	ngular mat ample, Sta ion of me onfidence ance, Con Test, Z-tes Standard n R ² .	rices. tistical ans, S interva fidence tt, F-tes deviat	inferen Samplin I for mo e limits st, chi-s	nce, Sa ng dist eans, C ,, Hypo square uartile,	mpling with ribution of Confidence in othesis, Null test. Decile, Pere	and without r proportions. nterval for pro hypothesis, centiles, Res	eplacement, Unbiased an oportions. Alternative h idual MSE ar	[8Hrs] Population ad efficient [8Hrs] ypothesis, [8Hrs] nd MAE, ,
matrice Unit III Sampli parame estimat Unit IV Hypoth Type-I Unit V Statisti Root M Text Bo	ing & Esti eters, sam res, Point e nesis test and Type- ics: Mean ean Squa ooks	e linear operator, Inverse of non-sin mation Theory: Population and sa aple statistics, Sampling distributi estimates and interval estimates, C ing: Introduction, Level of significant Il errors, , Testing a hypothesis,, t- , Median, Mode, Mean deviation, re error, Coefficient of determination	ngular mat ample, Sta ion of me onfidence ance, Con Test, Z-tes Standard n R ² .	rices. tistical ans, S interva fidence t, F-tes deviat	inferer Samplin I for me e limits st, chi-s	nce, Sa ng dist eans, C ,, Hypo square uartile,	mpling with ribution of Confidence in othesis, Null test. Decile, Pere	and without r proportions. nterval for pro hypothesis, centiles, Res	eplacement, Unbiased an oportions. Alternative h idual MSE ar	[8Hrs] Population ad efficient [8Hrs] ypothesis, [8Hrs] nd MAE, ,
matrice Unit III Sampli parame estimat Unit IV Hypoth Type-I Unit V Statisti Root M Text Bo S.N	ing & Esti eters, sam res, Point e nesis test and Type- ics: Mean lean Squa ooks	e linear operator, Inverse of non-sin mation Theory: Population and sa aple statistics, Sampling distributi estimates and interval estimates, C ing: Introduction, Level of significant Il errors, , Testing a hypothesis,, t- , Median, Mode, Mean deviation, re error, Coefficient of determination Title	ngular mat ample, Sta ion of me onfidence ance, Con Test, Z-tes Standard n R ² .	rices. tistical ans, S interva fidence t, F-tes deviat	inferen Samplin I for mo e limits st, chi-s ion, Qu s	nce, Sa ng dist eans, C ,, Hypo square uartile,	mpling with ribution of Confidence in othesis, Null test. Decile, Pero Editic	and without r proportions. nterval for pro hypothesis, centiles, Res	eplacement, Unbiased an oportions. Alternative h idual MSE ar Publis	[8Hrs] Population ad efficient [8Hrs] ypothesis, [8Hrs] nd MAE, ,
matrice Unit III Sampli parame estimat Unit IV Hypoth Type-I Vnit V Statisti Root M Text Be S.N 1	ing & Esti eters, sam es, Point e nesis test and Type- ics: Mean lean Squa ooks	e linear operator, Inverse of non-sin mation Theory: Population and sa aple statistics, Sampling distributi estimates and interval estimates, C ing: Introduction, Level of significant Il errors, , Testing a hypothesis,, t- , Median, Mode, Mean deviation, re error, Coefficient of determination Title te Mathematical Structures with	ngular mat ample, Sta ion of me onfidence ance, Con Test, Z-tes Standard n R ² .	rices. tistical ans, S interva fidence t, F-tes deviat	inferen Samplin I for me e limits st, chi-s ion, Qu s Manoha	nce, Sa ng dist eans, C ,, Hypo square uartile, ar	mpling with ribution of Confidence in othesis, Null test. Decile, Pero Editio 35th	and without r proportions. nterval for pro hypothesis, centiles, Res	eplacement, Unbiased an oportions. Alternative h idual MSE ar Publis Tata McG	[8Hrs] Population ad efficient [8Hrs] ypothesis, [8Hrs] nd MAE, , sher raw Hill
matrice Unit III Sampli parame estimat Unit IV Hypoth Type-I Unit V Statisti Root M Text Bo S.N 1	ing & Esti eters, sam es, Point e mesis test and Type- ics: Mean ean Squa ooks Discre Applica	e linear operator, Inverse of non-sin mation Theory: Population and sa aple statistics, Sampling distributi estimates and interval estimates, C ing: Introduction, Level of signific: Il errors, , Testing a hypothesis,, t- , Median, Mode, Mean deviation, re error, Coefficient of determinatio Title te Mathematical Structures with tions to Computer Science (TMH)	ngular mat ample, Sta ion of me onfidence ance, Con Test, Z-tes Standard n R ² .	rices. tistical ans, S interva fidence t, F-tes deviat	inferen Samplin I for me e limits st, chi-s ion, Qu ion, Qu s Manoha	ace, Sa ag dist eans, C ,, Hypo square uartile, ar	mpling with ribution of Confidence in othesis, Null test. Decile, Pero Editio 35th	and without r proportions. nterval for pro hypothesis, centiles, Res	eplacement, Unbiased an oportions. Alternative h idual MSE ar Publis Tata McG	[8Hrs] Population ad efficient [8Hrs] ypothesis, [8Hrs] nd MAE, , sher raw Hill
matrice Unit III Sampli parame estimat Unit IV Hypoth Type-I Unit V Statisti Root M Text Be S.N 1	ing & Esti eters, sam es, Point of mesis test and Type- ics: Mean ean Squa ooks Discre Applica	e linear operator, Inverse of non-sin mation Theory: Population and sa aple statistics, Sampling distributi estimates and interval estimates, C ing: Introduction, Level of signific II errors, , Testing a hypothesis,, t- , Median, Mode, Mean deviation, re error, Coefficient of determinatio Title te Mathematical Structures with tions to Computer Science (TMH) ar Algebra And Its Applications	ngular mat ample, Sta ion of me onfidence ance, Con Test, Z-tes Standard n R ² .	rices. tistical ans, S interva fidence t, F-tes deviat	inferen Samplin I for me e limits st, chi-s ion, Qu s Manoha ang	ace, Sa ag dist eans, C ,, Hypo square uartile, ar	mpling with ribution of Confidence in othesis, Null test. Decile, Pero Editio 35th	and without r proportions. nterval for pro hypothesis, centiles, Res	eplacement, Unbiased an oportions. Alternative h idual MSE ar Publis Tata McG Nelson Eng	[8Hrs] Population ad efficient [8Hrs] ypothesis, [8Hrs] nd MAE, , sher raw Hill gineering
matrice Unit III Sampli parame estimat Unit IV Hypoth Type-I Unit V Statisti Root M Text Bo S.N 1 2	ing & Esti eters, sam es, Point e nesis test and Type- ics: Mean ean Squa ooks Discre Applica Line	e linear operator, Inverse of non-sin mation Theory: Population and sa apple statistics, Sampling distributi estimates and interval estimates, C ing: Introduction, Level of signific II errors, , Testing a hypothesis,, t- , Median, Mode, Mean deviation, re error, Coefficient of determinatio Title te Mathematical Structures with tions to Computer Science (TMH) ar Algebra And Its Applications	ngular mat ample, Sta ion of me onfidence ance, Con Test, Z-tes Standard n R ² .	rices. tistical ans, S interva fidence t, F-tes deviat	inferen Samplin I for me e limits st, chi-s ion, Qu s Manoha ang	ace, Sa ag dist eans, C ,, Hypo square uartile, ar	mpling with ribution of Confidence in othesis, Null test. Decile, Pero Editic 35th	and without r proportions. nterval for pro hypothesis, centiles, Res	eplacement, Unbiased an oportions. Alternative h idual MSE an Publis Tata McG Nelson Eng (200	[8Hrs] Population ad efficient [8Hrs] ypothesis, [8Hrs] nd MAE, , sher raw Hill gineering 7)
matrice Unit III Sampli parame estimat Unit IV Hypoth Type-I Unit V Statisti Root M Text Bo S.N 1 2 3	In the second se	e linear operator, Inverse of non-sin mation Theory: Population and sa apple statistics, Sampling distributi estimates and interval estimates, C ing: Introduction, Level of significant Il errors, , Testing a hypothesis,, t- , Median, Mode, Mean deviation, re error, Coefficient of determination Title te Mathematical Structures with tions to Computer Science (TMH) ar Algebra And Its Applications y & problems of Probability and	ngular mat ample, Sta ion of me onfidence ance, Con Test, Z-tes Standard n R ² .	rices. tistical ans, S interva fidence t, F-tes deviat deviat	inferen Samplin I for me e limits st, chi-s ion, Qu s Manoha ang piegel	ace, Sa ag dist eans, C ,, Hypo square uartile, ar	mpling with ribution of Confidence in othesis, Null test. Decile, Pero Edition 35th 5th	and without r proportions. nterval for pro hypothesis, centiles, Res	replacement, Unbiased an oportions. Alternative h idual MSE an Publis Tata McG Nelson Eng (200 Schaum	[8Hrs] Population ad efficient [8Hrs] ypothesis, [8Hrs] nd MAE, , sher raw Hill gineering 7) Series
matrice Unit III Sampli parame estimat Unit IV Hypoth Type-I Unit V Statisti Root M Text Bo S.N 1 2 3	es Invertibl ing & Esti eters, sam es, Point e nesis test and Type- ics: Mean ean Squa ooks Discre Applica Linea Theor	e linear operator, Inverse of non-sin mation Theory: Population and sa apple statistics, Sampling distributi estimates and interval estimates, C ing: Introduction, Level of significant Il errors, , Testing a hypothesis,, t- , Median, Mode, Mean deviation, re error, Coefficient of determination Title te Mathematical Structures with tions to Computer Science (TMH) ar Algebra And Its Applications y & problems of Probability and Statistics	ngular mat ample, Sta ion of me onfidence ance, Con Test, Z-tes Standard n R ² .	rices. tistical ans, S interva fidence t, F-tes deviat deviat	inferen Samplin I for me e limits st, chi-s ion, Qu s Manoha ang piegel	ace, Sa ag dist eans, C ,, Hypo square uartile, ar	mpling with ribution of Confidence in othesis, Null test. Decile, Pero Editio 35th 5th	and without r proportions. nterval for pro hypothesis, centiles, Res	eplacement, Unbiased an oportions. Alternative h idual MSE an Publis Tata McG Nelson Eng (200 Schaum	[8Hrs] Population ad efficient [8Hrs] ypothesis, [8Hrs] nd MAE, , sher raw Hill gineering 7) Series
matrice Unit III Sampli parame estimat Unit IV Hypoth Type-I Unit V Statist Root M Text Bo S.N 1 2 3 Referee	ing & Esti eters, sam es, Point e nesis test and Type- ics: Mean ean Squa ooks Discre Applica Linea Theor	e linear operator, Inverse of non-sin mation Theory: Population and sa apple statistics, Sampling distributi estimates and interval estimates, C ing: Introduction, Level of significant II errors, , Testing a hypothesis,, t- , Median, Mode, Mean deviation, re error, Coefficient of determination Title te Mathematical Structures with tions to Computer Science (TMH) ar Algebra And Its Applications y & problems of Probability and Statistics s	ngular mat ample, Sta ion of me onfidence ance, Con Test, Z-tes Standard n R ² .	rices. tistical ans, S interva fidence t, F-tes deviat deviat	inferen Samplin I for me e limits st, chi-s ion, Qu s Manoha ang piegel	ace, Sa ag dist eans, C ,, Hypo square uartile, ar	mpling with ribution of Confidence in othesis, Null test. Decile, Pero Editio 35th 5th 4th	and without r proportions. nterval for pro hypothesis, centiles, Res	eplacement, Unbiased an oportions. Alternative h idual MSE an Publis Tata McG Nelson Eng (200 Schaum	[8Hrs] Population ad efficient [8Hrs] ypothesis, [8Hrs] nd MAE, , sher raw Hill gineering 7) Series
matrice Unit III Sampli parame estimat Unit IV Hypoth Type-I Unit V Statist Root M Text Bo S.N 1 2 3 Referent S.N	In the second se	e linear operator, Inverse of non-sin mation Theory: Population and sa apple statistics, Sampling distributi estimates and interval estimates, C ing: Introduction, Level of significant Il errors, , Testing a hypothesis,, t- , Median, Mode, Mean deviation, re error, Coefficient of determination <u>Title</u> te Mathematical Structures with tions to Computer Science (TMH) ar Algebra And Its Applications y & problems of Probability and Statistics s <u>Title</u> Title	ngular mat ample, Sta ion of me onfidence ance, Con Test, Z-tes Standard n R ² .	rices. tistical ans, S interva fidence t, F-tes deviati Author y and I pert Str y R. S Auth	inferen Samplin I for me e limits st, chi-s ion, Qu s Manoha ang piegel piegel	ace, Sa ag dist eans, C ,, Hypo square Jartile, ar	mpling with ribution of Confidence in othesis, Null test. Decile, Pero Editio 35th 5th 4th	and without r proportions. nterval for pro hypothesis, centiles, Res	eplacement, Unbiased an oportions. Alternative h idual MSE an idual MSE an Publis Tata McG Nelson Eng (200 Schaum	[8Hrs] Population ad efficient [8Hrs] ypothesis, [8Hrs] nd MAE, , [8Hrs] nd MAE, , sher raw Hill gineering 7) Series
matrice Unit III Sampli parame estimat Unit IV Hypoth Type-I Unit V Statist Root M Text Bo S.N 1 2 3 Referent S.N 1 2	ing & Esti eters, sam es, Point e nesis test and Type- ics: Mean lean Squa ooks Discre Applica Linea Theor nce Book	e linear operator, Inverse of non-sin mation Theory: Population and sa aple statistics, Sampling distributi estimates and interval estimates, C ing: Introduction, Level of significant Il errors, , Testing a hypothesis,, t- , Median, Mode, Mean deviation, re error, Coefficient of determination Title te Mathematical Structures with tions to Computer Science (TMH) ar Algebra And Its Applications y & problems of Probability and Statistics s Title crete Mathematical Structures	ngular mat ample, Sta ion of me onfidence ance, Con Test, Z-tes Standard n R ² .	rices. tistical ans, S interva fidence t, F-tes deviati deviati Author y and I pert Str by R. S Auth an, Bus	inferen Samplin I for me e limits st, chi-s ion, Qu s Manoha ang piegel piegel ors sby & R	ace, Sa ag dist eans, C ,, Hypo square uartile, ar	mpling with ribution of Confidence in othesis, Null test. Decile, Pero Editio 35th 5th 4th Edi	and without r proportions. nterval for pro hypothesis, centiles, Res	eplacement, Unbiased an oportions. Alternative h idual MSE ar idual MSE ar Publis Tata McG Nelson Eng (200 Schaum Publis PH	[8Hrs] Population ad efficient [8Hrs] ypothesis, [8Hrs] and MAE, , [8Hrs] and MAE, , sher raw Hill gineering 7) Series
matrice Unit III Sampli parame estimat Unit IV Hypoth Type-I Unit V Statist Root M Text B S.N 1 2 3 Referee S.N 1 2 2	ing & Esti eters, sam es, Point e mesis test and Type- ics: Mean ean Squa ooks Discre Applica Linea Theor nce Book	e linear operator, Inverse of non-sin mation Theory: Population and sa aple statistics, Sampling distributi estimates and interval estimates, C ing: Introduction, Level of significant Il errors, , Testing a hypothesis,, t- , Median, Mode, Mean deviation, re error, Coefficient of determination Title te Mathematical Structures with tions to Computer Science (TMH) ar Algebra And Its Applications y & problems of Probability and Statistics s Title crete Mathematical Structures Linear Algebra	ngular mat ample, Sta ion of me onfidence ance, Con Test, Z-tes Standard n R ² .	rices. tistical ans, S interva fidence t, F-tes deviat deviat Author y and I pert Str an, Bus pour Lips	inferen Samplin I for mo e limits st, chi-s ion, Qu s Manoha ang piegel piegel ors schutz o	ace, Sa ag dist eans, C ,, Hypo square uartile, ar ar	mpling with ribution of Confidence in othesis, Null test. Decile, Pero Edition 35th 5th 4th Edi 33	and without r proportions. nterval for pro- hypothesis, centiles, Res on tion rd	eplacement, Unbiased an oportions. Alternative h idual MSE ar Publis Tata McG Nelson Eng (200 Schaum Publis PH Schaum out	[8Hrs] Population ad efficient [8Hrs] ypothesis, [8Hrs] ad MAE, , [8Hrs] ad MAE, , sher raw Hill gineering 7) Series sher I ine series.
matrice Unit III Sampli parame estimat Unit IV Hypoth Type-I Unit V Statisti Root M Text B S.N 1 2 3 Referee S.N 1 2 3	Invertibles Invert	e linear operator, Inverse of non-sin mation Theory: Population and sa aple statistics, Sampling distributi estimates and interval estimates, C ing: Introduction, Level of signific: Il errors, , Testing a hypothesis,, t- , Median, Mode, Mean deviation, re error, Coefficient of determinatio Title te Mathematical Structures with tions to Computer Science (TMH) ar Algebra And Its Applications y & problems of Probability and Statistics s Title crete Mathematical Structures Linear Algebra her Engineering Mathematics	ngular mat ample, Sta ion of me onfidence ance, Con Test, Z-tes Standard n R ² .	rices. tistical ans, S interva fidence t, F-tes deviat Author y and I pert Str an, Bus our Lips / B.S. (inferen Samplin I for me e limits st, chi-s ion, Qu son, Qu s Manoha ang piegel ors schutz o Grewal	ace, Sa ag dist eans, C ,, Hypo square uartile, ar ar coss et al:	mpling with ribution of Confidence in othesis, Null test. Decile, Pero Edition 35th 5th 4th Edi 33 4th	and without r proportions. nterval for pro- hypothesis, centiles, Res on tion rd	replacement, Unbiased an oportions. Alternative h idual MSE ar idual MSE ar Publis Tata McG Nelson Eng (200 Schaum Ph Schaum outl Khanna Pu	[8Hrs] Population ad efficient [8Hrs] ypothesis, [8Hrs] md MAE, , [8Hrs] ad MAE, , [8Hrs] md MAE, , [8Hrs] sher raw Hill gineering 7) Series sher I ine series. ublication

(k).	wohpande	July 2024	1	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

THIRD SEMESTER

Course Code	Course Name	Th	n Tu Pr	Credits	Evaluation			
23DS302T	Object Oriented Brogramming	3	-	-	3	CA	ESE	Total
23003021	Object Offented Programming					30	70	100
	Course Objectives				Cou	rse Outcomes	6	
This course is ir	ntended		Studer	nts will	be able to			
 To prov Programm To enable paradigm To devel and I/O s 	ide understanding of Object Oriented ing concepts students to think in terms of object oriented and apply concepts to develop programs op an application using error handling techniques streams	Students will be able to object oriented • Analyze and think in terms of object oriented parad during development of application object oriented programs • Apply the concept object initialization and destroy using constructors and destructors. object concept object initialization and destroy using constructors and destructors. • Develop application using the concept of inheritance and evaluate the usefulness. • classify & demonstrate the use of different data structures linked list, trees & graphs along with related algorithms. • create applications with the usage of different data					radigm stroy cance th data ncept	
Unit I		l				•		8Hrs1

Unit I

Introduction to object oriented programming paradigm, procedure oriented programming vs OOP, features of OOP, benefits of OOP, Concept of a class, Access control of members of a class, instantiating a class, constructor UML diagrams to represent class, objects and various relationships.

Unit II

[8Hrs]

Functions in OOP, function overloading, friendly functions, Passing & returning Objects, pointers to members, constructors and destructors, copy constructor, operator overloading. Access specifiers and packages, Exception Handling: Benefits of exception handling, Throwing an exception, The try block, Catching an exception. Unit III

[8Hrs]

[8Hrs]

Inheritance: Defining a class hierarchy, Defining the Base and Derived classes, Different forms of inheritance, Access to the base class members, Base and Derived class constructors & Destructors, Virtual base class. Abstract classes. Polymorphism: Function Overloading, Constructor Overloading, Static and Dynamic binding, Virtual functions, Dynamic binding through virtual functions, Virtual function call mechanism, Pure virtual functions, Virtual destructors, Copy constructor.

Unit IV [8Hrs] Data Structures : Singly linked list, Implementation of linked list using static and dynamic memory allocation, operations on linked list, polynomial representations and manipulations are using linked list, circular linked list, doubly linked list, Generalized list. sparse matrix.

Unit V

Trees: Basic Terminology, Basic trees, Binary tree representations, threaded storage representation, binary tree traversals, binary search trees, Application of trees. Preliminary treatment of AVL Trees, B- Trees.

Graphs: Definition & terminology, Graph representation: matrix representation of Graph, Breadth First Search, Depth First Search, The concepts should be practiced using Java.

Text Books

S.N	Title	Authors	Edition	Publisher
1	Object oriented programming with java	M. T. Somashekara, d. S. Guru, k. S. Manjunatha		PHI
2	Object Oriented Programming In Java	Dr. G.T.Thampi		Dreamtech
3	The Complete Reference JAVA	Herbert Schildt	4th Edition	Tata McGraw Hill
4	Data structure and Algorithm	Lafore		BPB Publication

S.N	Title	Authors	Edition	Publisher
1	Data Structures , Algorithms, And Applications In Java	Sartaj Sahni	2	Universities Press
2	Data Structures Using Java	D. S. Malik, Premchand S. Nair		Thomson

(b)	wohpanele	JULY 2024	1	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

THIRD SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	Evaluatio n		
23DS302P	Object Oriented Programming Lab	-	-	- 2	1	CA	ESE	Total
23003021		_	_	~	•	25	25	50

Course Objectives	Course Outcomes		
The objective of this course is to provide students with a strong foundation in Object-Oriented Programming (OOP), enabling them to design and implement software solutions using core OOP principles Students will gain proficiency in programming languages like C++ or Java, develop problem-solving skills relevant to engineering applications, and learn to create modular, reusable, and maintainable code.	 Realize the difference between the top-down and bottom-up approach along with thinking in terms of objects. Students will be able to implement Linear and Non- Linear data structures. Implement operations like searching, insertion, and deletion, traversing mechanism etc. on various data structures. 		

Expt. No.	Title of the experiment
1	Program to implement concept of class and object
2	Program to implement constructor & destructor
3	Program to implement inheritance
4	Program to implement polymorphism
5	Program to implement abstract class
6	Implement a Menu driven program for Sorting methods and analyze their performances.
7	Implement a Program to demonstrate the working of a stack.
8	Implement a Program to demonstrate the working of a Queue
9	Implement a Program to apply the concepts of linked list
10	To Implement the nonlinear data structure binary tree

Text Books

S.N	Title	Authors	Edition	Publisher
1	Object Oriented Programming with C++	E.Balaguruswamy	6th	ТМН
2	The Complete Reference C++	Herbert Schildt	4th	Tata McGraw Hill
3	Fundamentals of Data Structure by	Horowitz and Sahani		CBS Publications

S. N	Title	Authors	Edition	Publisher
1.	Let us C++	Yashavant Kanetkar		BPB Publications
2.	Schaum's outline: Date Structures	Seymour Lipschutz		Tata Mc Graw Hill

(b)	wohpande	JULY 2024	1	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

THIRD SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	Ev	aluation	
22D0202T						CA	ESE	Total
23053031	Digital Circuits & Computer Architecture	3	-	-	3	30	70	100

Course Objectives	Course Outcomes
This course is intended- 1. Understand the foundations of decimal	Students will be able to-1. Students will confidently work
number systems and the metho23DS used to convert them.	with different number systems, like binary and hexadecimal.
2. Know Boolean algebra and use it to represent digital circuits.	2. Adeptly apply Boolean algebra and combinational logic
3. Understand the basic structure of computers that store	principles to design and analyze basic logic circuits
programs.	3. To understand how computers operate, from retrieving
4. To provide insight into the problems associated with control	instructions to carrying them out.
unit design.	4. Solve various computer arithmetic problems
5 To impart knowledge about computer architecture and	5. Analyze and describe different computer architectures
organization design	

Unit I

Number system and codes: Binary, octal, hexadecimal and decimal Number systems and theirinter conversion, BCD numbers (8421-2421),gray code, excess-3 code, cyclic code, code conversion, ASCII, EBCDIC codes. 1's and 2's complement

Unit II

Boolean Algebra: Basic logic circuits: Logic gates (AND, OR, NOT, NAND, NOR, Ex-OR, ExNOR and their truth tables, Universal Gates, Laws of Boolean algebra, De-Morgan's theorem, Combinational Logic: The Half adder, the full adder, subtractor circuit, Multiplxer demultiplexer, decorder,

Unit III

Basic organization of the stored program computer and operation sequence for execution of a program. Role of operating systems and compiler/assembler. Fetch, decode and execute cycle, Concept of operator, operand, registers and storage, Instruction format

UNIT IV

Design of ALU, Fixed point multiplication -Booth's algorithm, Fixed point division - Restoring and non-restoring algorithms, Floating point - IEEE 754 standard. Fixed and floating point representation of numbers.

Unit V

Central Processing Unit organization: General Register Organization, Stack organization, Instruction formats, Addressing modes, Data Transfer and Manipulation, Program Control, CISC and RISC processors, Control unit design: Design approaches, Control memory, Address sequencing.

Text Books

S.N	Title	Authors	Edition	Publisher
1	Computer Organization & Architecture	William stalkings	8th edition	Prentice Hall
2	"Digital Fundamentals"	Thomas L. Floyd	11th Edition	Pearson

Reference Books

S.N	Title	Authors	Edition	Publisher
1	Computer Organization	J. P. Hayes,	5 th Edition	Tata McGraw-Hill
2	Digital Design	M. Morris believe	6th Edition	Prentice Hall

(b)	wohpende	JULY 2024	1	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

[8Hrs]

[8Hrs]

[8Hrs]

[8Hrs]

[8Hrs]

THIRD SEMESTER

Course Name	Th	Th Tu Pr Credits Evaluation							
Digital circuits & Internet of Things					CA	ESE	Total		
Lab	-	-	4	2	25	25	50		
Course Objectives			Course Outcomes						
This course is intended-			Students will be able to-						
	Course Name Digital circuits & Internet of Things Lab Course Objectives nded-	Course Name Th Digital circuits & Internet of Things - Lab - Course Objectives - nded- S	Course Name Th Tu Digital circuits & Internet of Things - - Lab - - Course Objectives - - nded- Students	Course Name Th Tu Pr Digital circuits & Internet of Things Lab - - 4 Course Objectives nded- Students will b	Course Name Th Tu Pr Credits Digital circuits & Internet of Things Lab - - 4 2 Course Objectives Course Objectives Course Objectives nded- Students will be able to-	Course Name Th Tu Pr Credits Evalua Digital circuits & Internet of Things Lab - - 4 2 25 Course Objectives Course Objectives Course Outcomes nded- Students will be able to-	Course Name Th Tu Pr Credits Evaluation Digital circuits & Internet of Things Lab - - 4 2 CA ESE Course Objectives Course Objectives Nded-		

•	To provide students with a comprehensive understanding of	 Understand the principles of digital logic and circuit 	
٠	digital logic design principles	design	th
٠	the practical implementation of embedded systems using	microcontrollers or IoT devices.	uı
	platforms such as Arduino and Raspberry Pi.		
٠	Through hands-on experimentation, students will develop the		
	necessary skills to design, simulate, and implement digital		
	circuits and embedded systems.		

Expt . No.	Title of the experiment
1	To verify the truth tables of basic logic gates: AND, OR, NOR, NAND, NOR. Ex-OR, Ex-NOR.
2	Design and implement combinational logic circuits for basic functions such as addition, subtraction, and comparison
3	Build and test half adder and full adder circuits using logic gates.
4	Build flip-flops (e.g., D flip-flop, JK flip-flop) using logic gates and demonstrate their behavior
5	To Study the Arduino and Raspberry Pi.
6	Write code to control the LED and SSD.
7	Write code to read temperature values from the sensor.
8	Test and evaluate the functionality of the sensor interface for real-time environmental monitorinG
9	Understand how LDR (Light Dependent Resistor) sensors work.
10	Write code to establish a Bluetooth connection and control devices wirelessly.

Text Books

S.N	Title	Authors	Edition	Publisher
1	Digital Design Principal and Practices	John F. Wakerly	6	Pearson Education Practices"
2	Internet of things	Rajkumar	6	Morgan

(Je)	wohpande	JULY 2024	1	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

THIRD SEMESTER

Course Code	Course Name	Th Tu Pr Credits Evaluation						
				_	_	CA	ESE	Total
23DS305P	Data Science Lab - I	-	-	2	1	25	25	50
	Course Objectives	Course Outcomes						
This course is inte Explore Install Ju Python F Perform Create a	ended Different Python Language Constructs pyter Notebook and Use It for Writing Programs Python documentation nd Manipulate Data in Pytho	•	Exp Inst Pyt Per Cre	lore D all Jup hon Pr form F ate an	ifferent P oyter Note ograms Python do d Manipu	ython Langua book and Us cumentation late Data in F	ige Constru e It for Wr Python	ucts iting

Expt. No.	Title of the experiment
1	Study of various data structures required for the data science tools.
2	To implement single and multidimensional arrays and frames using numpy library.
3	To implement the concept of data manipulation using series and dataframes with pandas library.
4	To perform data processing on real time dataset
5	To implement the statistical functions required for data science applications.
6	To perform the data visualization on real time dataset.
7	To perform the data preprocessing on the real time dataset using Python language.

Text books

S.N	Title	Authors	Edition	Publisher
1	Python for Data Analysis	Wes McKinney	3rd Edition	O'Reilly Media
2	Python Data Science Handbook: Essential Tools for Working with Data	Jake VanderPlas	1st Edition	O'Reilly Media

S. N	Title	Authors	Edition	Publisher
3.	Introduction to Data Science: Data Analysis and Prediction Algorithms with R	Alexander Dmitrienko and David L. Poole	1 st Edition	Springer
4.	Practical Statistics for Data Scientists: 50	Peter Bruce and Andrew	2 nd Edition	O'Reilly Media
	Essential Concepts	Bruce		

(Je)	wohyande	JULY 2024	1	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

THIRD SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation			
23DS306P	Web Technologies Lab			4	4 2	2	CA	ESE	Total
23D3300P	Web recimologies Lab			r	L	25	25	50	

Course Objectives	Course Outcomes
 This course is intended To develop an ability to design and implement static and dynamic website Use JavaScript for dynamic effects and to prepare DUD acriets 	 Students will be able to ● Design and implement dynamic websites with good aesthetic sense of designing and latest technical know-how's
PHP scripts	 Create web pages using HTML and Cascading Styles sheets
	• Analyze a web page and identify its elements and attributes
	Create dynamic web pages using JavaScript
	 Build web applications using PHP .

Expt. No.	Title of the experiment
1	To design the static web pages required for an online book store web site.
2	Write JavaScript to validate the fiel23DS of the Registration page.
3	Develop and demonstrate the usage of inline, internal and external style sheet using CSS
4	Develop and demonstrate JavaScript with POP-UP boxes and functions.
5	Develop HTML page that contains a selection box with a list of 5 countries.
6	Develop an HTML page including any required JavaScript that takes a number from text field in the range of 0 to 999 and shows it in wor23DS
7	Write a PHP Script to find out the Sum of the Individual Digits.
8	Write a PHP Script to check whether the given number is Palindrome or not.

Text Books

S.N	Title	Authors	Edition	Publisher
1	A beginner's guide to HTML, CSS, Javascript, and Web Graphics,	Jennifer Niederst Robbins		PHI

(k).	wohpande	JULY 2024	1	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

[6Hrs]

[6Hrs]

[6Hrs]

[6Hrs]

THIRD SEMESTER

			-	-				
Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation		
	Value Education Courses	_			-	CA	ESE	Total
23ES301T	Value Education Course - I	2	-	-	2	15	35	50

Course Objectives	Course Outcomes
This course is intended	Students will be able to
 To develop a holistic perspective through self- exploration and development of clarity about harmony between self, family, society and nature. 	 demonstrate awareness about concepts like self exploration & natural acceptance. understand concepts of aspirations and happiness. develop clarity of harmony and health in human being. discuss concepts of conservation of nature and harmony in nature/existence and re-usability.

Unit I : Introduction to Self-Exploration

Purpose & motivation for studying universal human values, Self-Exploration–what is it? - Its content and process, 'Natural Acceptance' and Experiential Validation- as the process for self-exploration.

Unit II: Understanding Happiness and Prosperity

Understanding Happiness and Prosperity correctly, Continuous Happiness and Prosperity- A look at basic Human Aspirations. Right understanding, Relationship and Physical Facility, Method to fulfill the above human aspirations: understanding and living in harmony at various levels.

Unit III: Understanding Harmony in human being

Understanding human being as a co-existence of the sentient 'I' and the material 'Body', Understanding the needs of Self ('I') and 'Body' - happiness and physical facility, Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer), Understanding the characteristics and activities of 'I' and harmony in 'I', Understanding the harmony of I with the Body: Sanyam and Health.

Unit IV: Co-existing with nature

Understanding the harmony in Nature, Interconnection and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature, Understanding Existence as Coexistence of mutually interacting units in all-pervasive space, Holistic perception of harmony at all levels of existence, Pollution, depletion of resources and role of technology.

Text Bo	oks			
Sr.No.	Title	Authors	Edition	Publisher
1	Human Values and Professional Ethics	Gaur, Sangal, Bagaria	2010	Excel Books, New Delhi
Referen	ce Books			
Sr.No.	Title	Authors	Edition	Publisher
1	Jeevan Vidya: Ek Parichaya	A. Nagaraj	1999	Jeevan Vidya Prakashan, Amarkantak
2	Human Values	A.N. Tripathi	2004	New Age Intl. Publishers, New Delhi
3	The Story of My Experiments with Truth	M.K.Gandhi	2009	Fingerprint! Publishers

(Je)	workpande	JULY 2024	1	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

THIRD SEMESTER

	Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation	
ſ	23DS331M MDM-I Data Analytics with Excel					CA	ESE	Total
			2	-	-	2	15	35

Course Objectives	Course Outcomes		
This course is intended to provide	Student will be able to:		
 students with introductory knowledge of several excel techniques that can be used for data analysis. 	 Understand basic functions in excel for data analysis Perform data visualization in excel Analyze data and draw inferences from data Make use of Hypothesis testing 		

[5Hrs]

Unit I

Reading Data into Excel, Basic Data Manipulation in Excel, Arithmetic Manipulation in Excel, Basic Functions in Excel.

Basic Excel Formulas, Structuring Data in Excel, Intermediate Excel Functions, Descriptive Statistics.

Unit II [5	Hrs]					
Introduction to Visualizations and Pie Charts, Histograms, Bar Charts, Line Charts, Box and Whisker, Radial Charts, Combo Charts, Scatter Plots, Conditional Formatting, Sparklines, Control Charts.						
Unit III [5	Hrs]					
Introduction to Pivot Tables, Root Cause Analysis, Comparative Analysis, Pivot Charts and Slicers						
Unit IV [5	iHrs]					
Types of Data, Fundamentals of Sampling, Distributions, Introduction to Hypothesis Testing, T-tests, Chi-Squared Test Par	rt 1					

Test for Normality, ANOVA, Simple Regression

Text Books

S.N	Title	Authors	Edition	Publisher
1	Modern Data Analytics in Excel	George Mount		O'Reilly home

S.N	Title	Authors	Edition	Publisher
1	DATA ANALYSIS AND BUSINESS MODELLING USING MICROSOFT EXCEL	MANOHAR, HANSA LYSANDER		PHI

(b)	wohpanele	JULY 2024	1	Applicable for	
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25	