ADJOE 1 SAJINE

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22 Artificial Intelligence

SEVENTH SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits		Evaluation	on
21AI701T	Expert Systems in Artificial	2	_	_	2	CA	ESE	Total
ZIAI/UII	Intelligence	3	_	_	3	30	70	100

Course Objectives	Course Outcomes
This course is intended to Learn the basics of an expert system. Gain knowledge about implementation of an expert system.	Students will be able to Interpret the basics of the expert system. Learn theoretical foundation of expert system. Distinguish the various types of expert systems. Comprehend the various components of an expert system. Develop the expert system.

Unit I: Introduction to Expert Systems	[7Hrs]
The nature of Expert Systems Types of applications of Expert Systems	stems relationship of Expert Systems to Artificial Intelligence
and to Knowledge-Based Systems. The nature of expertise Disti Expert System Choosing an application.	nguishing features of Expert Systems. Benefits of using an
Unit II: Inference in Expert Systems	[7Hrs]
Theoretical Foundations What an expert system is; how it worl	s and how it is built. Basic forms of inference: abduction;
Deduction; induction.	
Unit III: Knowledge base in Expert Systems	[7Hrs]
The representation and manipulation of knowledge in a computer	; Rule-based representations (with backward and forward
reasoning); logic-based representations (with resolution refutation	i); taxonomies; meronomies; frames (with inheritance and
exceptions); semantic and partitioned nets (query handling).	
Unit IV: Development of Expert Systems	[8Hrs]
Basic components of an expert system; Generation of explanation	ons; Handling of uncertainties; Truth Maintenance Systems;
Expert System Architectures; An analysis of some classic expenses	
Deep expert systems; Co-operating expert systems and the black	board model.
Unit V: Representation and evaluation	[7Hrs]
Building Expert Systems Methodologies for building expert system representation and evaluation. Knowledge Engineering tools, Cas	

Text Books

S.N	Title	Authors	Edition	Publisher
1	Introduction to Expert Systems	P Jackson	2nd	Addison Wesley.
2	Artificial Intelligence	Elaine Rich, Kevin Knight	2nd	McGraw-Hill, Inc.

-	S.N	Title	Authors	Edition	Publisher
	1	Problem Solving and Artificial	Jackson. Jean-Louis	3 rd	Prentice Hall.
		Intelligence	Lauriere		

(dere)	workende	July 2024	1.3	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22 Artificial Intelligence

SEVEN SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	E	valuation	
21AI702P	Software Lab - II			2	1	CA	ESE	Total
		-	-	_	'	25	25	50

Course Objectives	Course Outcomes
	Students will be able to Analyze Transformer Architecture Develop and Evaluate Text Generation with GPT Models: Implement Sentiment Analysis Using BERT Models Design and Compare Summarization Techniques
	Evaluate linguistic theories through empirical data analysis.

Sr.	
No.	List of Practicals
1	To study and understand the architecture of Transformer an innovative neural architecture presented by Google researchers in the famous paper Attention is All You Need in 2017– on natural language (NLP) tasks.
2	Develop a code to provide various prompts to GPT-2 and observe how it continues the text. Experiment with different prompt styles (e.g., narrative, dialogue, poetry) and analyze the creativity and coherence of the generated outputs. Compare the results with those generated by GPT-3 or GPT-4 to assess improvements in fluency and creativity over different model versions.
3	Design a program to Input a dataset of sentences into BERT for sentiment analysis. Evaluate its performance by comparing the results with those obtained using RoBERTa or DistilBERT. Discuss the strengths and weaknesses of each model in accurately detecting sentiment in different contexts.
4	Write set of instruction to input lengthy articles into the BART model and generate summaries. Evaluate the generated summaries based on completeness, accuracy, and readability. Compare BART's performance with T5 or other summarization models, discussing the trade-offs between brevity and informativeness.
5	Develop a code to use mBERT to translate text from one language to another. Compare the translations with those produced by OpenAl's GPT or Google's mT5, assessing grammatical correctness, fluency, and fidelity to the original meaning. Discuss the effectiveness of mBERT in handling nuances across languages
6	Provide context paragraphs and questions to ALBERT and evaluate the accuracy and relevance of its answers. Compare the results with those from BERT or XLNet, focusing on the model's ability to understand and respond to complex queries.
7	Write a program to input text samples into RoBERTa for classification tasks, such as spam detection or topic categorization. Compare its classification accuracy and speed with models like BERT or DistilBERT. Discuss scenarios where RoBERTa excels or falls short compared to other models.
8	Use SpaCy's pre-trained NER model to extract entities from a dataset. Validate the results by comparing them with outputs from BERT-NER or Flair, focusing on precision and recall. Discuss the model's ability to generalize across different types of text (e.g., news articles, social media).
Open	ended practical
9	Project on Health Care Dataset
10	Project

Om-	mahpande	July 2024	1.3	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

ADJOE & CHIME

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22 Artificial Intelligence

Text Books

Sr.	Title	Authors	Edition	Publisher
No.				
1	Hands-On Large Language Models	Jay Alammar &	1 st	O'Reilly Media
		Maarten Grootendorst		
2		Aurelien Geron	1 st	O'Reilly Media
	Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition			

Sr. No.	Title	Authors	Edition	Publisher
1	Quick start Guide to Large Language Models	SINAN OZEMIR	1 st	Addison-Wesley

(In the second s	wahpande	July 2024	1.3	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22

Artificial Intelligence

SEVEN SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation		
21Al703T(i)	PE-IV Augmented Reality & Virtual	0			2	CA	ESE	Total
21A1/031(1)	Reality	3	-	-	3	30	70	100

Course Objectives	Course Outcomes
This course is intended to	Students will be able to
 Learn the fundamental Computer Vision, Computer Graphics and Human-Computer interaction Techniques related to AR/VR. 	 Learn fundamental Computer Vision, Computer Graphics and Human Computer Interaction Techniques related to AR/VR.
 Review the Geometric Modeling Techniques. 	Analyze Geometric Modeling Techniques
Review the Virtual Environment.	Evaluate the Virtual Environment
 Discuss and Examine AR/VR Technologies. 	 Evaluate AR/VR Technologies.
	 Apply various types of Hardware and Software in Virtual Reality systems.

Unit I : Visual Computation In Virtual Reality	[7Hrs]
Fundamentals of Computer Graphics-Software and Hardware 7	Technology on Stereoscopic, Display-Advanced Techniques
in CG, Management of Large-Scale Environments & Real Time	Rendering.

Unit II: Introduction to Virtual Reality (VR)

[7Hrs]

Virtual Reality and Virtual Environment, Computer graphics, Real time computer graphics, Flight Simulation, Virtual environment requirement, benefits of virtual reality, Historical development of VR, Scientific Landmark, Frameworks in Virtual Reality: Frameworks of Software Development Tools in VR. X3D Standard; Vega, MultiGen, Virtools etc.

Unit III: Introduction Of Augmented Reality

System Structure of Augmented Reality, Key Technology in AR, AR software development, AR software. Camera parameters and camera calibration, Marker-based augmented reality, Pattern recognition. AR Toolkit.

Unit IV: Virtual Environment

Introduction, Virtual environment, Computer environment, VR technology, Model of interaction, VR Systems, Animating the Virtual Environment: Introduction, The dynamics of numbers, Linear and Nonlinear interpolation, the animation of objects, linear and non-linear translation, shape & object in between, free from deformation, particle system

Unit V: Application of VR in Al And Digital Entertainment

VR Technology in Film & TV Production. VR Technology in Physical Exercises and Games. Demonstration of Digital Entertainment by VR.3D user interfaces - Why 3D user interfaces. Major user tasks in VE. Interaction techniques for selection, manipulation and navigation.3DUI evaluation. Application of AI: Duolingo, Google Earth VR, Labster, Immerse, Dream Box Learning.

Text Books

JAL D.	30110			
S. N	Title	Authors	Edition	Publisher
1	Virtual Reality Technology.	Coiffet, P., Burdea, G. C	1 st	Wiley-IEEE Press
2	Augmented Reality: Principles & Practice	Schmalstieg, D., Höllerer, T	1 st	Pearson
3.	Wiley Handbook of Human Computer Interaction	Norman, K., Kirakowski, J	1 st	Wiley- Blackwell

S.	Title	Authors	Edition	Publisher
N				
1	Understanding Augmented Reality,	Craig, A. B	1 st	Morgan
	Concepts and ApplicationsMachine			Kaufmann
	Learning Engineer			

Om-	wahrpande	July 2024	1.3	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22 Artificial Intelligence

SEVEN SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation		
21AI703P(i)	PE-IV Augmented Reality & Virtual			2	1	CA	ESE	Total
Z1A1/U3P(1)	RealityLab	_	-		1	25	25	50

Course Objectives	Course Outcomes
This course is intended to	Students will be able to
 Learn the Geometric Modeling Techniques. Review the Virtual Environment. Discuss and Examine AR/VR Technologies. 	 Learn fundamental Computer Vision, Computer Graphics and Human Computer Interaction Techniques related to AR/VR. Analyze Geometric Modeling Techniques Evaluate the Virtual Environment Evaluate AR/VR Technologies. Apply various types of Hardware and Software in Virtual Reality systems.

Sr. No	List of Practicals
1	Implementation of Computer Graphics.
2	Implementation of Stereoscopic Display
3	Implementation of Real-Time Rendering
4	Implementation of Augmented Reality Development
5	Implementation of Virtual Environment Interaction
6	Implementation of Animation in Virtual Environments
7	Implementation of VR Technology in Digital Entertainment
8	Micro based Project based on studied syllabus.
Open End	led Practical
9	Implementation of 3D User Interfaces
10	Design and Implement Basic Argument Reality Application

Text Books

Sr. No.	Title	Authors	Edition	Publisher
1	Virtual Reality Technology.	Coiffet, P., Burdea, G. C	1 st	Wiley-IEEE
				Press
2	Augmented Reality: Principles & Practice	Schmalstieg, D., Höllerer, T	1 st	Pearson
3.	Wiley Handbook of Human Computer	Norman, K., Kirakowski, J	1 st	Wiley-
	Interaction			Blackwell

	ioo zooko			
Sr.	Title	Authors	Edition	Publisher
No.				
1	Understanding Augmented Reality, Concepts	Craig, A. B	1 st	Morgan
	and ApplicationsMachine Learning Engineer			Kaufmann
2	Developing Virtual Reality Applications,	Craig, A. B., Sherman, W. R., Will,	2 nd	Morgan
	Foundations of Effective Design			Kaufmann

(donn)	mangande	July 2024	1.3	Applicable for	
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25	

J3/

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22 Artificial Intelligence

SEVENTH SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation		
21AI703T	i) PE-IV Information Retrieval	2			2	CA	ESE	Total
21A1/031	i) PE-IV illiorination Retrieval	3	-	-	3	30	70	100

Course Objectives	Course Outcomes
 This course is intended to Learn the various aspects of an Information retrieval system Analyze fundamental techniques for hypermedia architectures, design and usability, document management and retrieval, metadata management, and searching the web. Use advanced techniques for assessing the performance of information retrieval. 	Demonstrate the basics of Information Retrieval Analyze data structures like Inverted Indices used in Information retrieval systems. Evaluate information retrieval system Apply different techniques for distributed and multimedia IR Develop a complete IR system from Scratch

Unit I Introduction to Information Retrieval

[6Hrs]

Basic Concepts of IR, Data Retrieval & Information Retrieval, Text mining and IR relation, IR system block diagram, Automatic Text Analysis: Luhn's ideas, Conflation Algorithm, Indexing and Index Term Weighting, Probabilistic Indexing, Automatic Classification. Measures of Association, Different Matching Coefficients, Cluster Hypothesis, Clustering Techniques: Rocchio's Algorithm, Single pass algorithm, Single Link algorithm

Unit II Indexing and Searching Techniques

[6Hrs]

Indexing: Inverted file, Suffix trees & suffix arrays, Signature Files, Scatter storage or hash addressing.

Searching Techniques: Boolean Search, sequential search, Serial search, cluster-based retrieval, Query languages, Types of queries, Patterns matching, structural queries. IR Models: Basic concepts, Boolean Model, Vector Model, Probabilistic Model.

Unit III Evaluation and Visualization of Information Retrieval System

[6Hrs]

Performance Evaluation: Precision and recall, MRR, F-Score, NDCG, user-oriented measures. Visualization in Information System: Starting points, Query Specification, document context, User relevance judgment, Interface support for search process.

Unit IV Distributed and Multimedia IR

[6Hrs]

Distributed IR: Introduction, Collection Partitioning, Source Selection, Query Processing. Multimedia IR: Introduction, Data Modelling, Query Language, Background-Spatial Access Method, A Generic Multimedia

Indexing Approach, One Dimensional Time Series, Two-Dimensional color Images, Automatic Feature Extraction, Trends and Research Issue

Unit V Web Searching [10Hrs]

Introduction, Challenges, Web Characteristics, Search Engines: Centralized Architecture, Distributed Architecture, User Interfaces, Ranking, Crawling the web, Indices, Browsing, Meta-searchers, Searching using Hyperlinks, Trends and Research Issues, Introduction to Web Scraping: Python for web scraping, Request, HTML parsing, Beautiful Soup. XML Retrieval: Basic XML concepts, Challenges in XML retrieval, Vector space model for XML retrieval, Evaluation of XML retrieval, Text-Centric vs. Data-Centric XML retrieval. Recommendation System: Collaborative Filtering and Content Based Recommendation of Documents and Products. Introduction to Semantic Web.

Text Books

Sr. No	Title	Authors	Edition	Publisher
1	Information Retrieval	Stefan Büttcher, Charles L. A. Clarke	2 nd	MIT
2	Modern Information Retrieval: the concepts and technology behind search	Ricardo Baeza- Yates and Berthier Ribeiro – Neto,	3rd	Pearson -
3	Search Engines: Information Retrieval in Practice,	Bruce Croft, Donald Metzler and Trevor Strohman	1st	Pearson,

Sr. No.	Title	Authors	Edition	Publisher
1	Information Storage and Retrieval Systems: Theory and Implementation	Gerald J Kowalski, Mark T Maybury	3 rd	Springer
2	Introduction to Information Retrieval	C. Manning, P. Raghavan, and H. Schütze	2 nd	Cambridge University Press
3	Information Storage & Retrieval	Dr. Archana K. Ratnaparkh, Jyoti S. Chinchole	1 st	NIRALI

(dem)	mangande	July 2024	1.3	Applicable for	
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25	

[\$\frac{1}{2}\]

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22

Artificial Intelligence

SEVENTH SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation		
24 A I 7 O 2 D (;;)	Information Datricual Lab				4	CA	ESE	Total
21Al703P(ii)	Information Retrieval Lab	-	-		1	25	25	50

Course Objectives	Course Outcomes
This course is intended to Learn about building a basic search engine or document retrieval system. Work on different classification algorithms.	Students will be able to Design IR Model. Apply Pre-processing in IR Systems. Design Text based and Web Based Retrieval Systems. Implement classification algorithms like Naive Bayes, Max Entropy, Rochio's, Support Vector Machine. Develop a complete IR system from Scratch.

C: No	List of Prestical
Sr. No.	List of Practical
1	Representation of a Text Document in Vector Space Model and Computing Similarity between two with a total
	vocabulary size of at least 1000 words.
2	Pre-processing of a Text Document: stop word removal and stemming
3	Construction of an Inverted Index for a given document collection comprising of at least 50 documents with a total
	vocabulary size of at least 1000 words.
4	Classification of a set of Text Documents into known classes (You may use any of the Classification algorithms like
	Naive Bayes, Max Entropy, Rochio's, Support Vector Machine). Standard Datasets will have to be used to show the
	results
5	Text Document Clustering using K-means. Demonstrate with a standard dataset and compute performance measures-
	Purity, Precision, Recall and F-measure.
6	Crawling/ Searching the Web to collect news stories on a specific topic (based on user input). The program should have
	an option to limit the crawling to certain selected websites only.
7	Mining Twitter to identify tweets for a specific period (and/or from a geographical location) and identify trends and named
	entities
8	Implementation of PageRank on Scholarly Citation Network
9	Micro Project
Open End	led Practical
10	Develop a semantic search engine that leverages natural language processing (NLP) techniques to understand and
	retrieve relevant information based on user queries.
11	Design and implement a recommender system using collaborative filtering and content-based filtering techniques, and
	evaluate its performance.

Text Books

CAL D	CAL BOOKS							
Sr. No.	Title	Authors	Edition	Publisher				
1	Information Retrieval	Stefan Büttcher, Charles L. A. Clarke	2 nd	MIT				
2	Modern Information Retrieval: the concepts and technology behind search	Ricardo Baeza- Yates and Berthier Ribeiro – Neto,	3 rd	Pearson -				
3	Search Engines: Information Retrieval in Practice,	Bruce Croft, Donald Metzler and Trevor Strohman	1 st	Pearson,				

Sr. No.	Title	Authors	Edition	Publisher
1	Information Storage and Retrieval Systems: Theory and Implementation	Gerald J Kowalski, Mark T Maybury	3 _{rd}	Springer
2	Introduction to Information Retrieval	C. Manning, P. Raghavan, and H. Schütze	2 nd	Cambridge University Press
3	Information Storage & Retrieval	Dr. Archana K. Ratnaparkh, Jyoti S. Chinchole	1 st	NIRALI

(donn)	wahrande	July 2024	1.3	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22

Artificial Intelligence

SEVENTH SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation		
21AI703T (iii)	PE-IV Computer Vision	2			2	CA	ESE	Total
21A17031 (III)	PE-IV Computer vision	3	_	-	3	30	70	100

Co	ourse Objectives	Course Outcomes
computer vis Apply vari techniques c	age processing techniques for	Students will be able to Learn low level processing of image and transformation techniques applied to images. Adapt the feature extraction, segmentation and object recognition methods. Apply Histogram transform for detection of geometric shapes like line, ellipse and objects.
		 Illustrate 3D vision process and motion estimation techniques. Apply vision techniques to real time applications.

Unit I Introduction [7Hrs] Image Processing, Computer Vision - Low-level, Mid-level, High-level; Fundamentals of Image Formation, Transformation:

Orthogonal, Euclidean, Affine, Projective, Fourier Transform, Convolution and Filtering, Image Enhancement, Restoration, Histogram Processing.

Unit II Feature Extraction and Feature Segmentation

[7Hrs]

Feature Extraction -Edges - Canny, LOG, DOG; Line detectors (Hough Transform), Corners - Harris and Hessian Affine, Orientation Histogram, SIFT, SURF, HOG, GLOH, Scale-Space 69 Analysis- Image Pyramids and Gaussian derivative filters, Gabor Filters and DWT. Image Segmentation -Region Growing, Edge Based approaches to segmentation, Graph-Cut, Mean-Shift, MRFs, Texture Segmentation.

Unit III Images, Histograms, Binary Vision

[8Hrs]

Simple pinhole camera model - Sampling - Quantisation - Colour images - Noise - Smoothing - 1D and 3D histograms Histogram/Image Equalisation - Histogram Comparison - Back-projection - k-means Clustering - Thresholding - Threshold Detection Methods - Variations on Thresholding - Mathematical Morphology - Connectivity.

Unit IV 3D Vision And Motion [7Hrs]

Methods for 3D vision - projection schemes - shape from shading - photometric stereo - shape from texture - shape from focus active range finding - surface representations - point-based representation - volumetric representations - 3D object recognition -3D reconstruction – introduction to motion – triangulation – bundle adjustment – translational alignment – parametric motion–splinebased motion- optical flow - layered motion.

Unit V Applications [7Hrs]

Overview of Diverse Computer Vision Applications: Document Image Analysis, Biometrics, Object Recognition, Tracking, Medical Image Analysis, Content-Based Image Retrieval, Video Data Processing, Application based on Deep Learning for computer vision.

Text Books

Sr. No	Title	Title Authors		Title Authors Edition		Publisher
1	Computer Vision: A Modern Approach"	D. A. Forsyth, J. Ponce,	2 nd	Pearson Education		
2	Computer Vision: Algorithms and	Richard Szeliski	2 nd	Springer Verlag		
	Applications			London Limited		

Sr.	Title	Authors	Edition	Publisher
No				
•				
1	Computer Vision: Models, Learning, and	Simon J. D. Prince	2 nd	Cambridge University
	Inference			
2	Feature Extraction & Image Processing	Mark Nixon and Alberto S. Aquado	3 rd	Academic Press
	for Computer Vision,			
3	Computer & Machine Vision	E. R. Davies	4 th	Academic Press

(dom)	mahpando		1.3	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22 Artificial Intelligence

SEVENTH SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation		
24 AIZO2D (;;;)	Computer Vision Lab			2	4	CA	ESE	Total
21AI703P (iii)	Computer vision Lab	-	-	- 2 1 25 25	50			

Course Objectives	Course Outcomes
Learn basic knowledge and theories in image processing and computer vision. Implement basic and some advanced image processing techniques in OpenCV. Evaluate Image segmentation, camera calibration and 3D reconstruction.	Students will be able to Implement the basic knowledge, theories and methods in image processing and computer vision. Adapt basic and some advanced image processing techniques in OpenCV. Analyze 2D a feature-based based image alignment, segmentation, and motion estimations. Apply 3D image reconstruction techniques. Design and develop innovative image processing and computer vision applications.

Sr.	List of Practical
No.	
1	OpenCV Installation and working with Python
2	Basic Image Processing - loading images, Cropping, Resizing, Thresholding, Contouranalysis, Bolb detection
3	Image Annotation – Drawing lines, text circle, rectangle, ellipse on images
4	Image Enhancement - Understanding Color spaces, color space conversion
5	Histogram equalization, Convolution, Image smoothing, Gradients, Edge Detection
6	Image Features and Image Alignment – Image transforms – Fourier, Hough, Extract-
	ORB Image features, Feature matching, cloning, Feature matching-based image
	Alignment
7	Image segmentation using Graphcut / Grabcut
8	Camera Calibration with circular grid, Pose Estimation-
9	Lab based on libraries supported for computer vision such as PyTorch and Fast Al.
10	Micro Project
Open E	nded Practical
11	Object Detection and Tracking using Kalman Filter, Camshift-
	docs. OpenCV
12	OpenCV/OpenCV-free-course

Text Books

Sr. No	Title	Authors	Edition	Publisher
1	Computer Vision: Algorithms and Applications	Richard Szeliski	2 nd	Springer Verlag London Limited.
2	Computer Vision: A Modern Approach	D. A. Forsyth, J. Ponce	2 nd	Pearson Education

	elice Books		T	
Sr.	Title	Authors	Edition	Publisher
No				
1	Computer Vision: Models, Learning, and	Simon J. D. Prince	2 nd	Cambridge
	Inference			University

(donn)	manpande		1.3	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

ARISE & SHINE

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22 Artificial Intelligence

SEVEN SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation		
24 A 1702T(iv)	PE-IV AI for Cyber Security	2			9	CA	ESE	Total
21Al703T(iv)	PE-IV All for Cyber Security	3	_	-	3	30	70	100

 This course is intended to The primary objective of this course is to equip Al engineering students with the knowledge and skills necessary to secure machine learning systems against various cyber threats. Students will learn to identify and mitigate security risks in machine learning models, protect against adversarial attacks, and implement ethical practices in Al development. Students will be able to Learn the fundamental principles of machine learning security, including the different types of machine learning and their associated security risks. Apply ethical considerations in machine learning tasks, ensuring data privacy, fairness, and user permission automated hacking techniques. Apply ethical considerations in machine learning tasks, including the creation and detection of deepfakes and automated hacking techniques. Apply ethical considerations in machine learning tasks, ensuring data privacy, fairness, and user permission 	Course Objectives	Course Outcomes
	This course is intended to The primary objective of this course is to equip Al engineering students with the knowledge and skills necessary to secure machine learning systems against various cyber threats. Students will learn to identify and mitigate security risks in machine learning models, protect against adversarial attacks, and	Students will be able to Learn the fundamental principles of machine learning security, including the different types of machine learning and their associated security risks. Apply ethical considerations in machine learning tasks, ensuring data privacy, fairness, and user permission validation. Detect and analyze anomalies in data to prevent malicious activities and employ effective anomaly detection strategies. Develop methods to protect against ML-driven attacks, including the creation and detection of deepfakes and
validation.		 Apply ethical considerations in machine learning tasks, ensuring data privacy, fairness, and user permission

Unit I - Securing a Machine Learning System

Defining Machine Learning Security: Defining Machine Learning Security, Building a picture of ML, Why is ML important?, Identifying the ML security domain, Understanding supervised learning, Understanding unsupervised learning, Understanding reinforcement learning, Distinguishing between supervised and unsupervised, Using ML from development to production.

Mitigating Risk at Training by Validating and Maintaining Datasets: Technical requirements, Defining dataset threats, Detecting dataset modification, Mitigating dataset corruption. Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks: Defining adversarial ML, Considering security issues in ML algorithms, Defining attacker motivations, Describing the most common attack techniques, Mitigating threats to the algorithm.

Unit II - Creating a Secure System Using ML

[8Hrs]

Considering the Threat Environment: Technical requirements, defining an environment, understanding business threats, considering social threats, Employing ML in security in the real world. **Keeping Your Network Clean**: Defining current network threats, considering traditional protections, Adding ML to the mix, Creating real-time defenses.

Unit III - Detecting and Analyzing Anomalies

[7Hrs]

Detecting and Analyzing Anomalies: Defining anomalies, Detecting data anomalies, Using anomaly detection effectively in ML, Considering other mitigation techniques. **Dealing with Malware**: Defining malware, Generating malware detection features, Classifying malware, Obtaining malware samples and labels.

Unit IV - Protecting against ML-Driven Attacks

[7Hrs]

Considering the Ramifications of Deepfakes : Defining a deepfake, Creating a deepfake computer setup, Installing TensorFlow on a desktop system, Understanding autoencoders, Understanding CNNs and implementing GANs. **Leveraging Machine Learning for Hacking :** Making attacks automatic and personalized, Enhancing existing capabilities.

Unit V - Performing ML Tasks in an Ethical Manner

[8Hrs]

Embracing and Incorporating Ethical Behavior: Sanitizing data correctly, Defining data source awareness, Validating user permissions, Understanding ML fairness, Determining what fairness means, Addressing fairness concerns, Mitigating privacy risks using federated learning and differential privacy, Distributing data and privacy risks using federated learning.

Om	wallande	July 2024	1.3	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

ARISE & SHINE

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22 Artificial Intelligence

Text Books

Sr.	Title	Authors	Edition	Publisher
No.				
1	Machine Learning Security Principles	John Paul Mueller	1 st	Oreilly
2	Hands-On Artificial Intelligence for	Alessandro Parisi	1 st	Oreilly
	Cybersecurity			
3.	Machine Learning for Cybersecurity	Emmanuel Tsukerman	1 st	Oreilly
	Cookbook			

Reference Books

Sr.	Title	Authors	Edition	Publisher
No.				
1	Machine Learning Blueprints You Should	Rajvardhan Oak	1 st	Oreilly
	Know for Cybersecurity			
2	Hands-On Machine Learning for	Soma Halder, Sinan	1 st	Oreilly
	Cybersecurity	Ozdemir		

Web Resources

https://www.packtpub.com/en-TH/product/machine-learning-security-principles-2-9781804618851/chapter/chapter-1-defining-machine-learning-security

https://www.packtpub.com/en-TH/product/machine-learning-security-principles-9781804618851#tocBlock

Om-	wahrande	July 2024	1.3	Applicable for	
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25	

ARISE & SHINE

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22 Artificial Intelligence

SEVEN SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation		
21Al703P(iv)	PE-IV AI for Cyber Security Lab			2	1	CA	ESE	Total
21A1703P(IV)	PE-IV AI TOI Cyber Security Lab	-	-	2	'	25	25	50

Course Objectives	Course Outcomes
 This course is intended to Quip Al engineering students with the knowledge and skills necessary to secure machine learning systems against various cyber threats. Students will learn to identify and mitigate security risks in machine learning models, protect against adversarial attacks, and implement ethical practices in Al development. 	Etudents will be able to Learn the fundamental principles of machine learning security, including the different types of machine learning Implement Supervise Algorithm using real time dataset. Apply Unsupervised Algorithm for Facebook dataset Use Validation to Mitigate risk Develop methods to protect against ML-driven attacks, including the creation and detection of deepfakes and automated hacking techniques.

Sr. No.	List of Practicals
1	Write a program to perform a Linear Regression supervised Algorithm using Salary Dataset.
2	Write a program to perform a K-means Clustering Unsupervised Algorithm using Facebook Live Sellers in
	Thailand dataset.
3	Write a program to perform a Reinforcement learning using Q-Learning technique using Test hash dataset.
	Write a program to perform a Mitigating Risk at Training by Validating and Maintaining Datasets.
4	 Write a program to implement detection of dataset modification.
_	Write a program to implement Mitigating dataset corruption.
5	Develop a program to perform a Security in Machine Learning model in the Real-World example
	using
	i. Working with basic and digest authentication
	ii. A Simple spam filtering
	Manipulating filtered data (Word Pattern)
6	Construct a program to perform a Secure System Using ML (business threats, social threats) by the
	use of
	i. Stemming technique.
	Lemmatization technique.
7	Apply Random Forest classifier to perform a Secure System Using Machine Learning (real-time defenses).
8	Design a program to perform a Detection and Analyzation Anomalies
	i. Write a program to perform a detection of data anomalies (Checking data validity) using
	Interquartile Range (IQR).
	Write a program to perform an Analysis of Data Anomalies using Principal Component Analysis (PCA).
Open ended	·
9	Implement a program to perform a ML Tasks in an Ethical Manner.
	 Write a program to perform a task of sanitizing data correctly.
	ii. Write a program to implement the concept of a Removing personally identifiable information.
	Write a program Eliminate unnecessary features.
10	Micro Project

Text Books

(dem)	mangande	July 2024	1.3	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22

Artificial Intelligence

Sr.	Title	Authors	Edition	Publisher
No.				
1	Machine Learning Security Principles	John Paul Mueller	1 st	Oreilly
2	Hands-On Artificial Intelligence for Cybersecurity	Alessandro Parisi	1 st	Oreilly
	Cybersecurity			
3.	Machine Learning for Cybersecurity Cookbook	Emmanuel Tsukerman	1 st	Oreilly

Reference Books

Sr. No.	Title	Authors	Edition	Publisher
1	Machine Learning Blueprints You Should Know for Cybersecurity	Rajvardhan Oak	1 st	Oreilly
2	Hands-On Machine Learning for Cybersecurity	Soma Halder, Sinan Ozdemir	1 st	Oreilly

Web Resources

https://www.packtpub.com/en-TH/product/machine-learning-security-principles-2-9781804618851/chapter/chapter-1-defining-machine-learning-security

https://www.packtpub.com/en-TH/product/machine-learning-security-principles-9781804618851#tocBlock

(dm)	workande	July 2024	1.3	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

ADISE & SHINE

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22 Artificial Intelligence

SEVEN SEMESTER

		OLVE	1 OLIVII		_			
Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation		
21Al704T(i)	PE-V AI in Health Care Domain	3	-	-	3	CA 30	ESE 70	Total

Course Objectives	Course Outcomes
 Learn the need and significance of AI and ML for Healthcare. Study advanced AI algorithms for Healthcare. Learn Computational Intelligence techniques. Evaluate metrics and ethics in intelligence for Healthcare systems, 	 Students will be able to Comprehend the role of Al and ML for handling Healthcare data Apply Advanced Al algorithms for Healthcare Problems. Apply various Computational Intelligence techniques for Healthcare Application. Apply evaluation metrics for evaluating healthcare systems. Develop NLP applications for healthcare using various NLP Techniques.

Unit I Introduction

Overview of AI, ML and DL,A Multifaceted Discipline, Applications of AI in Healthcare -Prediction, Diagnosis, personalized treatment and behavior modification, drug discovery, follow-up care etc., Realizing potential of AI in healthcare, Healthcare Data - Use Cases.

Unit II AI, ML, Deep Learning and Data Mining Methods for Healthcare

[8Hrs]

Knowledge discovery and Data Mining, ML, Multi classifier Decision Fusion, Ensemble Learning, Meta-Learning and other Abstract Methods. Evolutionary Algorithms, Illustrative Medical Application-Multiagent Infectious Disease Propagation and Outbreak Prediction, Automated Amblyopia Screening System etc. Computational Intelligence Techniques, Deep Learning, Unsupervised learning, dimensionality reduction algorithms.

Unit III Evaluating learning for Intelligence

[7Hrs]

Model development and workflow, evaluation metrics, Parameters and Hyperparameters, Hyperparameter tuning algorithms, multivariate testing, Ethics of Intelligence.

Unit IV Natural Language Processing in Healthcare

[7Hrs]

NLP tasks in Medicine, Low-level NLP components, High level NLP components, NLP Methods. Clinical NLP resources and Tools, NLP Applications in Healthcare. Model Interpretability using Explainable AI for NLP applications.

Unit V Intelligent personal Health Record

[7Hrs]

Introduction, Guided Search for Disease Information, Recommending SCA's. Recommending HHP's, Continuous User Monitoring.

Unit VI Future of Healthcare using AI

Evidence based medicine, Personalized Medicine, Connected Medicine, Digital Health and Therapeutics, Conversational Al, Virtual and Augmented Reality, Blockchain for verifying supply chain, patient record access, Robot - Assisted Surgery, Smart Hospitals, Case Studies on use of Al and ML for Disease Risk Diagnosis from patient data,

Augmented reality applications for Junior doctors.

Blockchain for verifying supply chain, patient record access, Robot - Assisted Surgery, Smart Hospitals, Case Studies on use of AI and ML for Disease Risk Diagnosis from patient data, Augmented reality applications for Junior doctors.

Text Books

Sr. No	Title	Authors	Edition	Publisher
1	Machine Learning and AI for Healthcare	Arjun Panesar	1 st	A Press
2	Medical applications of Artificial Systems	Arvin Agah	1 ^s	CRC Press

Sr. No	Title	Authors	Edition	Publisher
1	Artificial Intelligence in Medical Imaging- Opportunities, Applications and Risks	Erik R. Ranschaert Sergey Morozov Paul R. Algra	5 th	Springer
2	Data Science for Healthcare- Methodologies and Applications	Sergio Consoli Diego Reforgiato Recupero Milan Petković	2 nd	Springer

(dm)	workpande	July 2024	1.3	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22 Artificial Intelligence

SEVENTH SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits		Evaluati	on
21AI704T (ii)	PE-V AI in Finance Domain	3	_	_	3	CA	ESE	Total
21/41/041 (11)	I E V AI III I III alioc Dolliaiii					30	70	100

Course Objectives	Course Outcomes					
This course is intended to	Students will be able to					
 Comprehensive understanding of how artificial intelligence is revolutionizing the field of finance 	 Learn basic concepts and applications of artificial intelligence in finance. 					
 Focusing on the application of AI techniques to various financial tasks such as investment management, risk assessment, trading 	 Build machine learning algorithms and theirapplications in financial analysis. 					
strategies, and fraud detection.	 Apply practical skills in implementing AI techniques forfinancial modeling and prediction. 					
	 Evaluate the impact of AI on financial markets andregulatory challenges. 					
	 Explore ethical considerations and societalimplications of Al-driven finance. 					

Unit I Introduction to Artificial Intelligence in Finance

[7Hrs]

Overview of financial markets, instruments, and institutions, Introduction to artificial intelligence and machine learning, · Historical developments and recent trend, Applications of AI in finance: overview and potential impact, Ethical considerations and challenges in applying AI to finance.

Unit II Data Preprocessing and Feature Engineering

[7Hrs]

Data collection and cleaning techniques for financial datasets, Feature engineering for financial modeling and prediction, Handling missing data, outliers, and data normalization, Time-series data preprocessing and feature extraction.

Unit III Machine Learning Models in Finance

[8 Hrs]

Overview of supervised and unsupervised learning algorithms, Regression models for financial forecasting (e.g., stock price prediction),

Classification models for fraud detection and credit risk assessment, Clustering techniques for portfolio optimization and customer segmentation, Predictive modeling for stock price forecasting and risk assessment.

Unit IV Neural Networks and Deep Learning

[7Hrs]

Fundamentals of neural networks and deep learning, Architectures of deep learning models (e.g., feedforward neural networks, convolutional neural networks, recurrent neural networks). Applications of deep learning in finance: text mining, sentimentanalysis, and image recognition, Case studies of successful deep learning applications in finance

Unit V AI Ethics and Regulation in Finance

[7Hrs]

Ethical considerations in Al-driven finance, Regulatory challenges and compliance requirements, Fairness, transparency, and accountabilityin Al algorithms, Societal implications and future directions

Text Books

Sr. No.	Title	Authors	Edition	Publisher
1	Machine Learning for Finance: Principles and	Jannes Klaas	1st	Oreilly
2	Applications in Python Ethics of Artificial Intelligence and Finance"	Rajiv Sethi	1st	Oreilly
3.	Artificial Intelligence in Finance	Yves Hilpisch	1st	O'Reilly Media,

	Sr. No.	Title	Authors	Edition	Publisher
Ī	1	Artificial Intelligence and Financial Markets	Lawrence R. Ritter	1st	Springer

Om	manpande	July 2024	1.3	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22

ARTIFICIAL INTELLIGENCE

SEVEN SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation		
21Al704T(iii)	PE-V AI in Agriculture Domain	2			2	CA	ESE	Total
21A17041(III)	PE-V AI III Agriculture Domain	3	-	-	3	30	70	100

Course Objectives	Course Outcomes
This course is intended to • Learn the basic principles and concepts of Artificial	Students will be able to Comprehend AI and its usage in Agriculture domain.
Intelligence (AI) and its relevance to the agricultural sector. • Implement precision agriculture techniques using AI to optimize inputs (water, fertilizers, and pesticides) and improve crop management.	 Learn the basics of farming and how to use AI in agriculture domain. Know the importance of water management and will learn its usage. Automate various farming tasks with the use of AI domain. Enhance the quality of food processing with the help of AI techniques like image processing, predictions etc.

Unit I: Introduction to AI for Agricultural

[8Hrs]

Basic concepts of Artificial Intelligence (AI), Artificial Neural Networks (ANNs), Machine Learning (ML), Machine Vision, Internet of Things (IoT), Cloud Computing, Statistical Computing, Deep Learning, Expert Systems, Automated Data Analytics.

Unit II: Al for Agricultural Systems

[7Hrs]

Application of Al-ML for digital soil mapping, augmented reality for precise soil sampling, image processing for rapid soil property prediction via smartphone, soil spectroscopy-exploring the high dimensional soil spectral data, spectral preprocessing methods, modeling soil properties via ML algorithms, IoT in soil management.

Unit III: Al for Water Management:

[7Hrs]

On-farm water, nutrient and pest management, crop damage assessment, decision support systems, crop modeling, smart irrigation, yield prediction, rainfall-runoff, streamflow, sediment and water quality.

Unit IV: Al for Farm Mechanization

[7Hrs]

Al for Farm Mechanization: Application of Al for navigation of farm machinery, energy demand prediction for farm mechanization, and quality of tilth; Uniformity prediction for sowing, planting and transplanting; Crop disease detection, quantification of severity and mitigation; crop yield monitoring, and prediction of harvesting and threshing quality; Al for farm machinery management and custom hiring.

Unit V: Al for Food Processing

[7Hrs]

Application of AI and ML in food processing and packaging. Non-destructive quality evaluation of food based on spectral data, Image based quality detection, varietal identification of fruits and vegetables, sorting of products and packages, decision making for the consumers and profit enhancement by the industry people by proper market survey using AI, new product formulation.

Text Books

Sr.No.	Title	Authors	Edition	Publisher
1	Agricultural Mechanization and	Paul McNulty, Patrick M. 2 nd Eolss		Eolss Publishers
	Automation	Grace		
2	Innovations in Machine Learning and	Kumar, Abhishek,	1 st	IGI Global
	IoT for Water Management	Srivastav, Arun Lal,		
		Dubey, Ashutosh Kumar		
3.	Agriculture 5.0	Latief Ahmad, Firasath	1 st	CRC Press
	Artificial Intelligence, IoT and Machine	Nabi		
	Learning			
4.	Al in Food Industry for Food Products	Dr Syeda Sumera Ali	1 st	Blue Rose Publishers
	Quality Inspection			

Sr.No.	Title	Authors	Edition	Publisher
1	Hands-On Artificial Intelligence for IoT	Amita Kapoor	1 st	Oreilly
2	Internet of Things and Analytics for	Prasant Kumar Pattnaik,	3 rd	Springer
	Agriculture	Raghvendra Kumar,		
		Souvik Pal		

(dom)	wohande	July 2024	1.3	Applicable for
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22 ARTIFICIAL INTELLIGENCE

SEVEN SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation		
21 A17610 (i)	OE-III Introduction to Cloud Computing	2			2	CA	ESE	Total
21AI761O (i)	with ML	3	_	_	3	30	70	100

Course Objectives	Course Outcomes
This course is intended to Understand the Machine Learning Workflow Leverage AWS Services for ML Hands-On Practical Experience Focus on Model Deployment and Management	Students will be able to Introduction to cloud and machine learning concepts. Interpret machine learning on AWS and data preparation. Perform exploratory data analysis in AWS. Apply Model Selection, training, evaluation and hyper parameter tuning in AWS cloud. Learn Deploying, monitoring and managing ML Models on AWS

Unit I: Introduction to cloud and machine learning

[7Hrs]

Definition and Evolution of Cloud Computing, Cloud Service Models: IaaS, PaaS, SaaS, Cloud Deployment Models: Public, Private, Hybrid, Community, virtualization, virtual machine concept, Overview of Major Cloud Service Providers. Overview of machine learning concepts, definition, types of machine learning, applications. Machine learning algorithms: Supervised algorithms: Regression, classification: KNN, Naïve bayes, decision trees, random forest, SVM. Unsupervised algorithms: k-means, DBSCAN, hierarchical clustering algorithms.

Unit II: Introduction to Machine Learning with AWS

[8Hrs]

AWS Services for Machine Learning, Setting Up Your AWS Environment, Introduction to Amazon SageMaker, **Data Preparation for Machine Learning** Data Collection Strategies, Data Cleaning and Preprocessing, Data Storage on AWS: S3, RDS, DynamoDB, Hands-On: Uploading and Managing Data on AWS.

Unit III: Exploratory Data Analysis in AWS

[7Hrs]

Techniques for EDA, Visualizing Data with AWS Services, Hands-On: EDA using AWS Glue and Amazon QuickSight.

Unit IV: Model Selection, training, evaluation and hyperparameter tuning

[7Hrs]

Choosing the Right Model, Training Machine Learning Models, Distributed Training on AWS, Hands-On: Training a Model with Amazon SageMaker, Evaluating Model Performance, Hyperparameter Tuning Techniques, Using SageMaker for Hyperparameter Optimization, Hands-On: Hyperparameter Tuning on AWS

Unit V: Deploying, monitoring and managing ML Models on AWS

[7Hrs]

Introduction to Model Deployment, Deploying Models with SageMaker Endpoints, Hands-On: Deploying a Model to Production on AWS, Model Monitoring and Logging, Managing Model Versions, Hands-On: Monitoring and Managing Models with SageMaker, Case Study: Healthcare, Finance, and Retail.

Text Books

Sr. No.	Title	Authors	Edition	Publisher
1.	Cloud Computing: Concepts, Technology & Architecture	Thomas Erl	1 st	Prentice Hall

(dm)	workpande	July 2024	1.3	Applicable for
Chairman - BoS	Chairman - BoS Dean – Academics		Version	2024-25

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22 ARTIFICIAL INTELLIGENCE

2.	Practical Machine Learning with AWS: Process, Build, and Deploy Intelligent Solutions	Himanshu Singh and Drew Tawse	1 st	O'Reilly
3.	Architecting the Cloud: Design Decisions for Cloud Computing Service Models	Michael J. Kavis	1 st	Wiley

Sr. No.	Title	Authors	Edition	Publisher
1.	Mastering Cloud Computing: Foundations and Applications Programming	Rajkumar Buyya, Christian Vecchiola, and S. Thamarai Selvi	1st Edition	Morgan Kaufmann
2.	Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow	Aurélien Géron	2nd Edition	O'Reilly Media

(dom)	wohonde	July 2024	1.3	Applicable for
Chairman - BoS	hairman - BoS Dean – Academics		Version	2024-25

(An autonomous institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)

B. Tech. Scheme of Examination & Syllabus 2021-22

ARTIFICIAL INTELLIGENCE

SEVENTH SEMESTER

Course Code	Course Name	Th	Tu	Pr	Credits	Evaluation		
	OE-III Ethical Hacking	2			2	CA	ESE	Total
21Al761O (ii)	OE-III Ethical Hacking	3	_	_	3	30	70	100

Course Objectives	Course Outcomes
This course is intended to Evaluate the security policies and identify vulnerabilities in target systems, networks or system infrastructure. Introduce the methodologies and framework of ethical hacking for enhancing the security.	Students will be able to Learn the basics of ethical hacking and malware. Evaluate the concept of planning for controlled attack. Demonstrate the concept of Preparing for a hack Apply the concept of enumeration and exploitation. Demonstrate the concept of Deliverable and Integration

Unit I Introduction to Ethical Hacking

[8 Hrs]

Introduction: Hacking Impacts, The Hacker Framework: Planning the test, Sound Operations, Reconnaissance, Enumeration, Vulnerability Analysis, Exploitation, Final Analysis, Deliverable, Integration Information Security Models: Computer Security, Network Security, Service Security, Application Security, Security Architecture Information Security Program: The Process of Information Security, Component Parts of Information Security Program, Risk Analysis and Ethical Hacking.

Unit II Planning for a Controlled Attack

[8 Hrs]

The Business Perspective: Business Objectives, Security Policy, Previous Test Results, Business Challenges Planning for a Controlled Attack: Inherent Limitations, Imposed Limitations, Timing is Everything, Attack Type, Source Point, Required Knowledge, Multi-Phased Attacks, Teaming and Attack Structure, Engagement Planner, The Right Security Consultant, The Tester, Logistics, Intermediates, Law Enforcement

Unit III Preparing for a Hack

[7 Hrs]

Preparing for a Hack: Technical Preparation, Managing the Engagement Reconnaissance: Social Engineering, Physical Security, Internet Reconnaissance

Unit IV Enumeration and Exploitation

[7 Hrs]

Enumeration: Enumeration Techniques, Soft Objective, Looking Around or Attack, Elements of Enumeration, Preparing for the Next Phase Exploitation: Intuitive Testing, Evasion, Threads and Groups, Operating Systems, Password Crackers, Rootkits, applications, Wardialing, Network, Services and Areas of Concern

Unit V Deliverable and Integration

[7 Hrs]

Deliverable: The Deliverable, The Document, Overall Structure, Aligning Findings, Presentation Integration: Integrating the Results, Integration Summary, Mitigation, Defense Planning, Incident Management, Security Policy, Conclusion

Text Books

Sr. No.	Title	Authors	Edition	Publisher
1.	The Ethical Hack: A Framework for Business Value Penetration Testing	James S. Tiller	1 st	Auerbach Publications
2.	The Basics of Hacking and Penetration Testing: Ethical Hacking and Penetration Testing Made Easy	Patrick Engebretson.	2 nd	Syngress
3	Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives.	Sunit Belapure and Nina Godbole	1 st	Wiley India

Sr. No.	Title	Authors	Edition	Publisher
1	CEH official Certified Ethical Hacking	Kimberly Graves	2 nd	Willey
	Review Guide	-		,
2	Hands-On Ethical Hacking and Network	Michael Simpson, Kent Backman,	1 st	Cengage
	Defense"	James Corley		Learning

(dm)	workpande	July 2024	1.3	Applicable for	
Chairman - BoS	Dean – Academics	Date of Release	Version	2024-25	